• Title/Summary/Keyword: failure evaluation

Search Result 2,369, Processing Time 0.032 seconds

Structural Performance Evaluation of Reinforced Concrete Column Reinforced with Aramid Fibers and PET Fibers (아리미드섬유와 PET섬유시트로 보강한 철근콘크리트 기둥의 구조성능평가)

  • Dong-Hwan Kim;Min-Su Jo;Jin-Hyeung Choi;Woo-Rae Cho;Kil-Hee Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.78-85
    • /
    • 2023
  • This study evaluates the performance of reinforced concrete columns using hybrid fiber sheets for structural behavior. The purpose of this method is to improve the load-bearing capacity of the reinforced structure by impregnating a hybrid fiber sheet, which is woven by arranging aramid and glass fibers uniaxially and attached to an aged concrete structure requiring reinforcement with epoxy. In particular, not only the weight reduction of the material obtained by using a fiber lighter than the steel material, but also the low-strength, high-toughness fiber element among the fibers used delays the brittle fracture of the high-strength, low-toughness fiber element. The low-strength, high-toughness fiber element among the fibers used delays the brittle fracture of the high-strength, low-toughness fiber element, resulting in weight reduction compared to steel. The study conducted structural tests on four specimens, with the hybrid reinforcement method and failure mode as main variables. Specimen size and loading conditions were chosen to be comparable with previous studies. The structural performance of the specimen was evaluated using energy dissipation capacity and ductility. Analysis shows that excellent results can be obtained with the hybrid fiber sheet reinforcement.

A Study on Evaluation of Rock Brittleness Index using Punch Penetration Test (압입시험을 이용한 암석의 취성도 평가에 관한 연구)

  • Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • The brittleness of rocks plays an important role in determining the fragmentation and failure behavior of rock. However, there is still no standard method to evaluate the brittleness of rock, and previous studies have suggested the several definitions for estimation of brittleness of rock. Even in the process of mechanical rock excavation and drilling, the brittleness of rock is considered as an important property for evaluating the excavation efficiency of mechanical excavators or boreability of rock. The previous studies have been carried out to investigate the correlation between different brittleness of rock and cutting efficiency and boreability of rock. This study introduced a method for calculating the brittleness of rock from punch penetration test, and analyzed the correlation between the brittleness of rock calculated by the uniaxial compressive and Brazilian tensile strengths and that from punch penetration test. From the results of correlation analysis, the relationship between various brittleness was confirmed, and it was found that PSI and BI3 showed a good correlation with the strength-based brittleness index. In addition, the results indicated that B3 and B4 are suitable to represent the brittleness of rock in the field of mechanical rock excavation.

Evaluation of the Effect of Waveform Micropiles on Reinforcement of Foundation Structures Through Field Load Tests (현장 재하시험을 통한 파형 마이크로파일의 기초보강 효과 분석)

  • Baek, Sung-Ha;Han, Jin-Tae;Kim, Seok-Jung;Kim, Joonyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.3
    • /
    • pp.29-40
    • /
    • 2023
  • In this study, we investigated the reinforcing effects of waveform micropiles in a stratigraphic setting comprising buried soil, weathered soil, and weathered rock. We conducted a series of field load tests and determined that waveform micropiles exhibited sufficient bearing capacity through frictional resistance in the soil layer and demonstrated favorable constructability in conditions with deep bedrock layers. Moreover, the vertical stiffness of waveform micropiles was approximately 2.2 times higher than that of conventional micropiles when subjected to the same design load. Pile group load tests comprising conventional and waveform micropiles showed that micropiles with higher stiffness carried a greater proportion of the load. Although there was no significant difference in the bearing capacity between conventional and waveform micropiles under the same design load, waveform micropiles with higher stiffness showed a load-carrying capacity 1.7 to 3.2 times greater than that of conventional micropiles. These findings suggest that waveform micropiles can be effectively used for foundation reinforcement and reduce the risk of foundation failure when increased loads due to modifications such as expansion remodeling are expected.

Evaluating Essential Aspects of Novel Architectural Products: An In-depth Application of Importance-Performance Analysis (중요도-성취도 분석을 통한 건축 신제품의 요구사항 분석 연구)

  • Lee, Ung-Kyun;Kim, Jae-Yeob
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.305-313
    • /
    • 2023
  • With an increasing interest in the commercialization of research results in the present societal climate, especially in the construction industry, preliminary product analysis plays a critical role when introducing a new product to the market. It significantly influences the product's success or failure. In this context, this study aims to investigate the utility of Importance-Performance Analysis (IPA) as a management strategy tool for preliminary analysis in the commercialization of new architectural technologies. The study specifically assesses a smart ball product engineered for pipeline inspection. The evaluation is carried out based on product quality, convenience, and usability categories. Seventeen factors are recognized as sub-items, and a survey is conducted among relevant experts and consumer groups. From the survey, four key items are chosen: "Keep up the good work," "Concentrate here," "Low priority," and "Possible overkill." Suitable strategic measures are derived for each item. By conducting a correlation analysis between product importance and performance, this study offers a method to establish priority directions for future development. This analysis assists in identifying areas that necessitate improvement or additional focus to increase the product's commercial potential. On the whole, this study contributes to understanding and applying Importance-Performance Analysis as a valuable tool in the preliminary analysis and commercialization of novel technologies in the field of architecture.

Uplift Pressure Removal System in Underground Structure by Utilizing Geocomposite System (지오컴포지트를 이용한 양압력 제거공법)

  • Shin, Eun-Chul;Kim, Jong-In;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.61-68
    • /
    • 2006
  • Recently the large scale civil engineering projects are being implemented by reclaiming the sea or utilizing seashore and river embankment areas. The reclaimed land and utilized seashore are mostly soft ground that doesn't have sufficient bearing capacity. This soft ground consists of fine-grained soil such as clayey and silty soils or large void soil like peat or loose sand. It has high ground water table and it may cause the failure and crock of building foundation by uplift pressure and ground water leakage. In this study, the permittivity and the transmissivity were evaluated with the applied normal pressure in the laboratory. The laboratory model tests were conducted by utilizing geocomposite drainage system for draining the water out to release the uplift pressure. The soil used in the laboratory drainage test was dredged soil from the reclaimed land where uplift pressure problems can arise in soil condition. Geocomposite drainage system was installed at the bottom of apparatus and dredged soil was layered with compaction. Subsequently the water pressure was supplied from the top of specimen and the quantities of drainage and the pore water pressure were measured at each step water pressure. The results of laboratory measurements were compared with theoretical values. For the evaluation of propriety of laboratory drainage test, 2-D finite elements analysis that can analyze the distribution and the transferring of pore water pressure was conducted and compared with laboratory test results.

Double-Chambered Right Ventricle in an Old Standard Poodle Dog

  • Yunho Jeong;Yoonhwan Kim;Eunchan Lee;Ju-Hyun An;Sooyoung Choi;Jin-Young Chung;Jin-Ok Ahn
    • Journal of Veterinary Clinics
    • /
    • v.40 no.2
    • /
    • pp.130-134
    • /
    • 2023
  • A 12-year-old Standard Poodle presented with intermittent weakness and occasional dyspnea at the Veterinary Medicine Teaching Hospital of Kangwon National University. A grade of 4 out of 6 systolic murmur with an irregular tachycardic rhythm was auscultated on both sides of the chest. Systolic blood pressure was 140 mmHg. Panting was noticed in the hospital, but there was no crackle sound. Blood analysis revealed mild increases in liver panel levels (alanine aminotransferase 149 [reference interval, 19-70] U/L; and alkaline phosphatase, 185 [reference interval, 15-127] U/L) and severe increases in cardiac biomarker levels (n-terminal pro-brain natriuretic peptide, 4169 [reference interval, 50-900] pmol/L; and cardiac troponin I, 0.22 [reference interval, 0.03-0.12] ng/mL). On electrocardiography, irregularly irregular supraventricular tachycardic rhythm with an f-wave and no distinct p-wave was observed. Generalized cardiomegaly with an enlarged right atrium and left ventricle was confirmed on thoracic radiography. Moreover, hepatomegaly and an enlarged caudal vena cava were observed. Echocardiographic evaluation revealed a fibromuscular diaphragm in the right ventricle. Because of the obstructive lesion in the right ventricle, the right atrium and ventricle were enlarged (right atrial area index, 38.82 cm2/m2 [reference interval, 4.2-10.2 cm2/m2]; right ventricle end-diastolic area index, 14.152 cm2/m2 [reference interval, 4.9-10.92 cm2/m2]). Accordingly, the patient was diagnosed with double-chambered right ventricle (DCRV). Pimobendan, furosemide, enalapril, diltiazem, and S-adenosylmethionine (SAMe) were prescribed, and all symptoms were relieved. DCRV is a right-sided congenital heart defect resembling pulmonic valve stenosis. If symptoms are not severe, medical therapy can be facilitated without surgery or the balloon dilation.

Systemic literature review on the impact of government financial support on innovation in private firms (정부의 기술혁신 재정지원 정책효과에 대한 체계적 문헌연구)

  • Ahn, Joon Mo
    • Journal of Technology Innovation
    • /
    • v.30 no.1
    • /
    • pp.57-104
    • /
    • 2022
  • The government has supported the innovation of private firms by intervening the market for various purposes, such as preventing market failure, alleviating information asymmetry, and allocating resources efficiently. Although the government's R&D budget increased rapidly in the 2000s, it is not clear whether the government intervention has made desirable impact on the market. To address this, the current study attempts to explore this issue by doing a systematic literature review on foreign and domestic papers in an integrated way. In total, 168 studies are analyzed using contents analysis approach and various lens, such as policy additionality, policy tools, firm size, unit of analysis, data and method, are adopted for analysis. Overlapping policy target, time lag between government intervention and policy effects, non-linearity of financial supports, interference between different polices, and out-dated R&D tax incentive system are reported as factors hampering the effect of the government intervention. Many policy prescriptions, such as program evaluation indices reflecting behavioral additionality, an introduction of policy mix and evidence-based policy using machine learning, are suggested to improve these hurdles.

Association between Participation in a Rehabilitation Program and 1-Year Survival in Patients Requiring Prolonged Mechanical Ventilation

  • Wanho Yoo;Myung Hun Jang;Sang Hun Kim;Soohan Kim;Eun-Jung Jo;Jung Seop Eom;Jeongha Mok;Mi-Hyun Kim;Kwangha Lee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.2
    • /
    • pp.133-141
    • /
    • 2023
  • Background: The present study evaluated the association between participation in a rehabilitation program during a hospital stay and 1-year survival of patients requiring at least 21 days of mechanical ventilation (prolonged mechanical ventilation [PMV]) with various respiratory diseases as their main diagnoses that led to mechanical ventilation. Methods: Retrospective data of 105 patients (71.4% male, mean age 70.1±11.3 years) who received PMV in the past 5 years were analyzed. Rehabilitation included physiotherapy, physical rehabilitation, and dysphagia treatment program that was individually provided by physiatrists. Results: The main diagnosis leading to mechanical ventilation was pneumonia (n=101, 96.2%) and the 1-year survival rate was 33.3% (n=35). One-year survivors had lower Acute Physiology and Chronic Health Evaluation (APACHE) II score (20.2±5.8 vs. 24.2±7.5, p=0.006) and Sequential Organ Failure Assessment score (6.7±5.6 vs. 8.5±2.7, p=0.001) on the day of intubation than non-survivors. More survivors participated in a rehabilitation program during their hospital stays (88.6% vs. 57.1%, p=0.001). The rehabilitation program was an independent factor for 1-year survival based on the Cox proportional hazard model (hazard ratio, 3.513; 95% confidence interval, 1.785 to 6.930; p<0.001) in patients with APACHE II scores ≤23 (a cutoff value based on Youden's index). Conclusion: Our study showed that participation in a rehabilitation program during hospital stay was associated with an improvement of 1-year survival of PMV patients who had less severe illness on the day of intubation.

An Evaluation of Crack Resistance for Slag Asphalt Concrete Mixture Using Steel Slag Aggregates (제강슬래그 골재를 사용한 슬래그 아스팔트 혼합물의 균열저항성 평가)

  • Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • With the continuous industrial development, not only natural resource depletion, waste generation, but also various weather conditions are becoming more frequent. Efforts are continuing to recycle industrial by-products to overcome the climate crisis and save resources. Slag is a representative by-product generated in the steel industry, and it is characterized by improving rutting resistance and moisture sensitivity by increasing strength and reducing deformation when used as a material for asphalt concrete. On the other hand, slag has expansion properties so it is used as a relatively low-value-added material such as embankment and refilling materials. In order to expand the application of slag, an experiment was conducted to evaluate the crack resistance of slag asphalt concrete pavement. As a result of the indirect tensile strength test, it was found that the asphalt mixture using slag aggregate showed a value 1.13 times higher than that of the general HMA with the same particle size, and the toughness was 1.17 units, improving crack resistance. In addition, it was found that the failure number of the 4-point beam fatigue experiment and the slag asphalt mixture was 20,409, which was more than doubled compared to the general HMA. Furthermore, Overlay Test showed a tensile load residual rate of 4 times or more, improving crack resistance to repeated fatigue. Accordingly, the use of slag aggregate will likely have various advantages in improving the performance of asphalt concrete pavement.

Seismic Performance Evaluation of Unreinforced and ECC-jacketed Masonry Fences using Shaking Table Test (진동대실험을 사용한 비보강 및 ECC 자켓 보강 조적담장의 내진성능평가)

  • Yonghun Lee;Jinwoo Kim;Jae-Hwan Kim;Tae-Sung Eom;Sang-Hyun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.182-192
    • /
    • 2023
  • In this study, the efficacy of Engineered Cementitious Composite(ECC) jacket for masonry fences subjected to lateral dynamic load was experimentally verified through a shaking table test, comparing it with the performance of an unreinforced masonry(URM) fence. Firstly, dominant frequencies, modal damping ratios and deformed shapes were identified through an impact hammer test. URM and ECC-strengthened fences with heights of 940mm and 970mm had natural frequencies of 6.4 and 35.3Hz, and first modal damping ratios of 7.0 and 5.3%, respectively. Secondly, a shaking table test was conducted in the out-of-plane direction, applying a historical earthquake, El Centro(1940) scaled from 25 to 300%. For the URM fence, flexural cracking occurred at the interface of brick and mortar joint(i.e., bed joint) at the ground motion scaled to 50%, and out-of-plane overturning failure followed during the subsequent test conducted at the ground motion scaled to 30%. On the other hand, the ECC-jacketed fence showed a robust performance without any crack or damage until the ground motion scaled to 300%. Finally, the base shear forces exerted upon the URM and ECC-jacketed fences by the ground motions scaled to 25~300% were evaluated and compared with the ones calculated according to the design code. In contrast to the collapse risk of the URM fence at the ground motion of 1,000-year return period, the ECC-jacketed fence was estimated to remain safe up to the 4,800-year return period ground motion.