Journal of the Institute of Electronics Engineers of Korea SP
/
v.47
no.1
/
pp.25-34
/
2010
Robust face recognition under various illumination environments is difficult to achieve. For robust face recognition with respect to illumination variations, illumination normalization of face images is usually applied as a preprocessing step. Most of previously proposed illumination normalization methods cannot handle cast shadows in face images effectively. In this paper, We propose a new face illumination normalization method based on the illumination-separated face identity texture subspace. Since the face identity texture subspace is constructed so as to be separated from the effects of illumination variations, the projection of face images into the subspace produces a good illumination-normalized face images. Through experiments, it is shown that the proposed face illumination normalization method can effectively eliminate cast shadows as well as attached shadows and achieves a good face illumination normalization.
Proceedings of the Korea Contents Association Conference
/
2009.05a
/
pp.179-184
/
2009
Robust face recognition under various illumination environments is difficult to achieve. For face recognition robust to illumination changes, usually face images are normalized with respect to illumination as a preprocessing step before face recognition. The anisotropic smoothing-based illumination normalization method, known to be one of the best illumination normalization methods, cannot handle casting shadows. In this paper, we present an efficient illumination normalization method for face recognition. The proposed illumination normalization method separates the effect of illumination from eigenfaces and constructs an illumination-separated eigenface subspace. Then, an incoming face image is projected into the subspace and the obtained projected face image is rendered so that illumination effects including casting shadows are reduced as much as possible. Application to real face images shows the proposed illumination normalization method.
Facial expression, which changes face geometry, usually has an adverse effect on the performance of a face recognition system. To improve the face recognition rate, we propose a normalization method of facial expression to diminish the difference of facial expression between probe and gallery faces. Two approaches are used to facial expression modeling and normalization from single still images using a generic facial muscle model without the need of large image databases. The first approach estimates the geometry parameters of linear muscle models to obtain a biologically inspired model of the facial expression which may be changed intuitively afterwards. The second approach uses RBF(Radial Basis Function) based interpolation and warping to normalize the facial muscle model as unexpressed face according to the given expression. As a preprocessing stage for face recognition, these approach could achieve significantly higher recognition rates than in the un-normalized case based on the eigenface approach, local binary patterns and a grey-scale correlation measure.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.42
no.4
s.304
/
pp.59-68
/
2005
This paper proposes a face recognition under varying poses using local area obtained by side-view pose normalization. General normalization methods for face recognition under varying pose have a problem with the information about invisible area of face. Generally this problem is solved by compensation, but there are many cases where the image is distorted or features lost due to compensation .To solve this problem we normalize the face pose in side-view to reduce distortion that happens mainly in areas that have large depth variation. We only use undistorted area, removing the area that has been distorted by normalization. We consider two cases of yaw pose variation and pitch pose variation, and by experiments, we confirm the improvement of recognition performance.
Korean Journal of Computational Design and Engineering
/
v.13
no.6
/
pp.403-411
/
2008
The alignment of facial images is crucial for 2D face recognition. This is the same to facial meshes for 3D face recognition. Most of the 3D face recognition methods refer to 3D alignment but do not describe their approaches in details. In this paper, we focus on describing an automatic 3D alignment in viewpoint of quantitative analysis. This paper presents a framework of 3D face alignment and normalization based on feature points obtained by Active Shape Models (ASMs). The positions of eyes and mouth can give possibility of aligning the 3D face exactly in three-dimension space. The rotational transform on each axis is defined with respect to the reference position. In aligning process, the rotational transform converts an input 3D faces with large pose variations to the reference frontal view. The part of face is flopped from the aligned face using the sphere region centered at the nose tip of 3D face. The cropped face is shifted and brought into the frame with specified size for normalizing. Subsequently, the interpolation is carried to the face for sampling at equal interval and filling holes. The color interpolation is also carried at the same interval. The outputs are normalized 2D and 3D face which can be used for face recognition. Finally, we carry two sets of experiments to measure aligning errors and evaluate the performance of suggested process.
Face recognition is one of the problems to be solved by appearance based matching technique. However, the appearance of face image is very sensitive to variation in illumination. One of the easiest ways for better performance is to collect more training samples acquired under variable lightings but it is not practical in real world. ]:n object recognition, it is desirable to focus on feature extraction or normalization technique rather than focus on classifier. This paper presents a simple approach to normalization of faces subject to directional illumination. This is one of the significant issues that cause error in the face recognition process. The proposed method, ICR(illumination Compensation based on Multiple Linear Regression), is to find the plane that best fits the intensity distribution of the face image using the multiple linear regression, then use this plane to normalize the face image. The advantages of our method are simple and practical. The planar approximation of a face image is mathematically defined by the simple linear model. We provide experimental results to demonstrate the performance of the proposed ICR method on public face databases and our database. The experimental results show a significant improvement of the recognition accuracy.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.4
no.1
/
pp.25-44
/
2010
With the increasing popularity of mobile devices, it has become necessary to protect private information and content in these devices. Face recognition has been favored over conventional passwords or security keys, because it can be easily implemented using a built-in camera, while providing user convenience. However, because mobile devices can be used both indoors and outdoors, there can be many illumination changes, which can reduce the accuracy of face recognition. Therefore, we propose a new face recognition method on a mobile device robust to illumination variations. This research makes the following four original contributions. First, we compared the performance of face recognition with illumination variations on mobile devices for several illumination normalization procedures suitable for mobile devices with low processing power. These include the Retinex filter, histogram equalization and histogram stretching. Second, we compared the performance for global and local methods of face recognition such as PCA (Principal Component Analysis), LNMF (Local Non-negative Matrix Factorization) and LBP (Local Binary Pattern) using an integer-based kernel suitable for mobile devices having low processing power. Third, the characteristics of each method according to the illumination va iations are analyzed. Fourth, we use two matching scores for several methods of illumination normalization, Retinex and histogram stretching, which show the best and $2^{nd}$ best performances, respectively. These are used as the inputs of an SVM (Support Vector Machine) classifier, which can increase the accuracy of face recognition. Experimental results with two databases (data collected by a mobile device and the AR database) showed that the accuracy of face recognition achieved by the proposed method was superior to that of other methods.
KIPS Transactions on Software and Data Engineering
/
v.5
no.1
/
pp.43-50
/
2016
This paper introduces an appearance-based facial expression recognition method using ASM landmarks which is used to acquire a detailed face region. In particular, EHMM-based algorithm and SVM classifier with histogram feature are employed to appearance-based facial expression recognition, and performance evaluation of proposed method was performed with CK and JAFFE facial expression database. In addition, performance comparison was achieved through comparison with distance-based face normalization method and a geometric feature-based facial expression approach which employed geometrical features of ASM landmarks and SVM algorithm. As a result, the proposed method using ASM-based face normalization showed performance improvements of 6.39% and 7.98% compared to previous distance-based face normalization method for CK database and JAFFE database, respectively. Also, the proposed method showed higher performance compared to geometric feature-based facial expression approach, and we confirmed an effectiveness of proposed method.
Pose-variation factors present a significant problem in 2D face recognition. To solve this problem, there are various approaches for a 3D face acquisition system which was able to generate multi-view images. However, this created another pose estimation problem in terms of normalizing the 3D face data. This paper presents a 3D head pose-normalization method using 2D and 3D interaction. The proposed method uses 2D information with the AAM(Active Appearance Model) and 3D information with a 3D normal vector. In order to verify the performance of the proposed method, we designed an experiment using 2.5D face recognition. Experimental results showed that the proposed method is robust against pose variation.
Kim, Sang-Hoon;Jung, Sou-Hwan;Cho, Seong-Won;Chung, Sun-Tae
The Journal of the Korea Contents Association
/
v.8
no.1
/
pp.236-245
/
2008
Robust face recognition under various illumination environments is very difficult and needs to be accomplished for successful commercialization. In this paper, we propose an efficient illumination preprocessing method for face recognition. illumination preprocessing algorithm based on anisotropic smoothing is well known to be effective among illumination normalization methods but deteriorates the intensity contrast of the original image, and incurs less sharp edges. The proposed method in this paper improves the previous anisotropic smoothing based illumination normalization method so that it increases the intensity contrast and enhances the edges while diminishing effects of illumination. Due to the result of these improvements, face images preprocessed by the proposed illumination preprocessing method becomes to have more distinctive feature vectors(Gabor feature vectors). Through experiments of face recognition using Gabor jet similarity, the effectiveness of the proposed illumination preprocessing method is verified.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.