• Title/Summary/Keyword: face feature

Search Result 883, Processing Time 0.031 seconds

Face Feature Selection and Face Recognition using GroupMutual-Boost (GroupMutual-Boost를 이용한 얼굴특징 선택 및 얼굴 인식)

  • Choi, Hak-Jin;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.13-20
    • /
    • 2011
  • The face recognition has been used in a variety fields, such as identification and security. The procedure of the face recognition is as follows; extracting face features of face images, learning the extracted face features, and selecting some features among all extracted face features. The selected features have discrimination and are used for face recognition. However, there are numerous face features extracted from face images. If a face recognition system uses all extracted features, a high computing time is required for learning face features and the efficiency of computing resources decreases. To solve this problem, many researchers have proposed various Boosting methods, which improve the performance of learning algorithms. Mutual-Boost is the typical Boosting method and efficiently selects face features by using mutual information between two features. In this paper, we propose a GroupMutual-Boost method for improving Mutual-Boost. Our proposed method can shorten the time required for learning and recognizing face features and use computing resources more effectively since the method does not learn individual features but a feature group.

A Face Detection Method Based on Adaboost Algorithm using New Free Rectangle Feature (새로운 Free Rectangle 특징을 사용한 Adaboost 기반 얼굴검출 방법)

  • Hong, Yong-Hee;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.55-64
    • /
    • 2010
  • This paper proposes a face detection method using Free Rectangle feature which possesses a quick execution time and a high efficiency. The proposed mask of Free Rectangle feature is composed of two separable rectangles with the same area. In order to increase the feature diversity, Haar-like feature generally uses a complex mask composed of two or more rectangles. But the proposed feature mask can get a lot of very efficient features according to any position and scale of two rectangles on the feature window. Moreover, the Free Rectangle feature can largely reduce the execution time since it is defined as the only difference of the sum of pixels of two rectangles irrespective of the mask type. Since it yields a quick detection speed and good detection rates on real world images, the proposed face detection method based on Adaboost algorithm is easily applied to detect another object by changing the training dataset.

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • Sin, Yeong Suk
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.10-10
    • /
    • 2003
  • This paper extracts the edge of main components of face with Gabor wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

A 3D Face Reconstruction Method Robust to Errors of Automatic Facial Feature Point Extraction (얼굴 특징점 자동 추출 오류에 강인한 3차원 얼굴 복원 방법)

  • Lee, Youn-Joo;Lee, Sung-Joo;Park, Kang-Ryoung;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.122-131
    • /
    • 2011
  • A widely used single image-based 3D face reconstruction method, 3D morphable shape model, reconstructs an accurate 3D facial shape when 2D facial feature points are correctly extracted from an input face image. However, in the case that a user's cooperation is not available such as a real-time 3D face reconstruction system, this method can be vulnerable to the errors of automatic facial feature point extraction. In order to solve this problem, we automatically classify extracted facial feature points into two groups, erroneous and correct ones, and then reconstruct a 3D facial shape by using only the correctly extracted facial feature points. The experimental results showed that the 3D reconstruction performance of the proposed method was remarkably improved compared to that of the previous method which does not consider the errors of automatic facial feature point extraction.

Viewpoint Unconstrained Face Recognition Based on Affine Local Descriptors and Probabilistic Similarity

  • Gao, Yongbin;Lee, Hyo Jong
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.643-654
    • /
    • 2015
  • Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we propose using the combination of Affine Scale Invariant Feature Transform (SIFT) and Probabilistic Similarity for face recognition under a large viewpoint change. Affine SIFT is an extension of SIFT algorithm to detect affine invariant local descriptors. Affine SIFT generates a series of different viewpoints using affine transformation. In this way, it allows for a viewpoint difference between the gallery face and probe face. However, the human face is not planar as it contains significant 3D depth. Affine SIFT does not work well for significant change in pose. To complement this, we combined it with probabilistic similarity, which gets the log likelihood between the probe and gallery face based on sum of squared difference (SSD) distribution in an offline learning process. Our experiment results show that our framework achieves impressive better recognition accuracy than other algorithms compared on the FERET database.

Robust AAM-based Face Tracking with Occlusion Using SIFT Features (SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적)

  • Eom, Sung-Eun;Jang, Jun-Su
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.355-362
    • /
    • 2010
  • Face tracking is to estimate the motion of a non-rigid face together with a rigid head in 3D, and plays important roles in higher levels such as face/facial expression/emotion recognition. In this paper, we propose an AAM-based face tracking algorithm. AAM has been widely used to segment and track deformable objects, but there are still many difficulties. Particularly, it often tends to diverge or converge into local minima when a target object is self-occluded, partially or completely occluded. To address this problem, we utilize the scale invariant feature transform (SIFT). SIFT is an effective method for self and partial occlusion because it is able to find correspondence between feature points under partial loss. And it enables an AAM to continue to track without re-initialization in complete occlusions thanks to the good performance of global matching. We also register and use the SIFT features extracted from multi-view face images during tracking to effectively track a face across large pose changes. Our proposed algorithm is validated by comparing other algorithms under the above 3 kinds of occlusions.

Robust Face Alignment using Progressive AAM (점진적 AAM을 이용한 강인한 얼굴 윤곽 검출)

  • Kim, Dae-Hwan;Kim, Jae-Min;Cho, Seong-Won;Jang, Yong-Suk;Kim, Boo-Gyoun;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.11-20
    • /
    • 2007
  • AAM has been successfully applied to face alignment, but its performance is very sensitive to initial values. In this paper, we propose a face alignment method using progressive AAM. The proposed method consists of two stages; modelling and relation derivation stage and fitting stage. Modelling and relation derivation stage first builds two AAM models; the inner face AAM model and the whole face AAM model and then derive the relation matrix between the inner face AAM model parameter vector and the whole face AAM model parameter vector. The fitting stage is processed progressively in two phases. In the first phase, the proposed method finds the feature parameters for the inner facial feature points of a new face, and then in the second phase it localizes the whole facial feature points of the new face using the initial values estimated utilizing the inner feature parameters obtained in the first phase and the relation matrix obtained in the first stage. Through experiments, it is verified that the proposed progressive AAM-based face alignment method is more robust with respect to pose, and face background than the conventional basic AAM-based face alignment.

Robot vision system for face recognition using fuzzy inference from color-image (로봇의 시각시스템을 위한 칼라영상에서 퍼지추론을 이용한 얼굴인식)

  • Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.106-110
    • /
    • 2014
  • This paper proposed the face recognition method which can be effectively applied to the robot's vision system. The proposed algorithm is recognition using hue extraction and feature point. hue extraction was using difference of skin color, pupil color, lips color. Features information were extraction from eye, nose and mouth using feature parameters of the difference between the feature point, distance ratio, angle, area. Feature parameters fuzzified data with the data generated by membership function, then evaluate the degree of similarity was the face recognition. The result of experiment are conducted with frontal color images of face as input images the received recognition rate of 96%.

Identification System Based on Partial Face Feature Extraction (부분 얼굴 특징 추출에 기반한 신원 확인 시스템)

  • Choi, Sun-Hyung;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.168-173
    • /
    • 2012
  • This paper presents a new human identification algorithm using partial features of the uncovered portion of face when a person wears a mask. After the face area is detected, the feature is extracted from the eye area above the mask. The identification process is performed by comparing the acquired one with the registered features. For extracting features SIFT(scale invariant feature transform) algorithm is used. The extracted features are independent of brightness and size- and rotation-invariant for the image. The experiment results show the effectiveness of the suggested algorithm.

Facial Phrenology Analysis and Automatic Face Avatar Drawing System Based on Internet Using Facial Feature Information (얼굴특징자 정보를 이용한 인터넷 기반 얼굴관상 해석 및 얼굴아바타 자동생성시스템)

  • Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.8
    • /
    • pp.982-999
    • /
    • 2006
  • In this paper, we propose an automatic facial phrenology analysis and avatar drawing system based on internet using multi color information and face geometry. In the proposed system, we detect face using logical product of Cr and I which is a components of YCbCr and YIQ color model, respectively. And then, we extract facial feature using face geometry and analyze user's facial phrenology with the classification of each facial feature. And also, the proposed system can make avatar drawing automatically using extracted and classified facial features. Experimental result shows that proposed algorithm can analyze facial phrenology as well as detect and recognize user's face at real-time.

  • PDF