• Title/Summary/Keyword: eye-tracking system

Search Result 172, Processing Time 0.023 seconds

A methodology for evaluating human operator's fitness for duty in nuclear power plants

  • Choi, Moon Kyoung;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.984-994
    • /
    • 2020
  • It is reported that about 20% of accidents at nuclear power plants in Korea and abroad are caused by human error. One of the main factors contributing to human error is fatigue, so it is necessary to prevent human errors that may occur when the task is performed in an improper state by grasping the status of the operator in advance. In this study, we propose a method of evaluating operator's fitness-for-duty (FFD) using various parameters including eye movement data, subjective fatigue ratings, and operator's performance. Parameters for evaluating FFD were selected through a literature survey. We performed experiments that test subjects who felt various levels of fatigue monitor information of indicators and diagnose a system malfunction. In order to find meaningful characteristics in measured data consisting of various parameters, hierarchical clustering analysis, an unsupervised machine-learning technique, is used. The characteristics of each cluster were analyzed; fitness-for-duty of each cluster was evaluated. The appropriateness of the number of clusters obtained through clustering analysis was evaluated using both the Elbow and Silhouette methods. Finally, it was statistically shown that the suggested methodology for evaluating FFD does not generate additional fatigue in subjects. Relevance to industry: The methodology for evaluating an operator's fitness for duty in advance is proposed, and it can prevent human errors that might be caused by inappropriate condition in nuclear industries.

Visual servo control of robots using fuzzy-neural-network (퍼지신경망을 이용한 로보트의 비쥬얼서보제어)

  • 서은택;정진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.566-571
    • /
    • 1994
  • This paper presents in image-based visual servo control scheme for tracking a workpiece with a hand-eye coordinated robotic system using the fuzzy-neural-network. The goal is to control the relative position and orientation between the end-effector and a moving workpiece using a single camera mounted on the end-effector of robot manipulator. We developed a fuzzy-neural-network that consists of a network-model fuzzy system and supervised learning rules. Fuzzy-neural-network is applied to approximate the nonlinear mapping which transforms the features and theire change into the desired camera motion. In addition a control strategy for real-time relative motion control based on this approximation is presented. Computer simulation results are illustrated to show the effectiveness of the fuzzy-neural-network method for visual servoing of robot manipulator.

  • PDF

A Basic Study on Real Time 3D Location-Tracking in Ground and Underground Using MEMS Sensor (MEMS 센서를 이용한 지상 및 지하에서의 실시간 3차원 위치추적 기술에 관한 기초적 연구)

  • Seol, Munhyung;Jang, Yonggu;Jeon, Heungsoo;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • In Korea, the number of mining operations are getting smaller. But buried accidents are on the increase every year. For this reason, it is important to safety management in construction process, especially the worker's safety. In the field of construction needs utilization of integration system according to purpose of utilization, particularly in underground construction sites utilizing is emphasized even more. The current element technologies of location tracking, sensors and wireless communication possible to utilize but it is still difficult to utilization of integration system in construction field because a study is not complete on commercialization and availability. In this study, for real time 3-dimensional management of ubiquitous construction site in ground and underground, measure data using MEMS sensor, EDM and DGPS in 2 test site. Also results were analysed by MATLAB. As a result, error is verification less than 3 meter that possible to distinguish with the naked eye and construct direction of study based on result of former.

A Study on Manipulating Method of 3D Game in HMD Environment by using Eye Tracking (HMD(Head Mounted Display)에서 시선 추적을 통한 3차원 게임 조작 방법 연구)

  • Park, Kang-Ryoung;Lee, Eui-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.49-64
    • /
    • 2008
  • Recently, many researches about making more comfortable input device based on gaze detection technology have been done in human computer interface. However, the system cost becomes high due to the complicated hardware and there is difficulty to use the gaze detection system due to the complicated user calibration procedure. In this paper, we propose a new gaze detection method based on the 2D analysis and a simple user calibration. Our method used a small USB (Universal Serial Bus) camera attached on a HMD (Head-Mounted Display), hot-mirror and IR (Infra-Red) light illuminator. Because the HMD is moved according to user's facial movement, we can implement the gaze detection system of which performance is not affected by facial movement. In addition, we apply our gaze detection system to 3D first person shooting game. From that, the gaze direction of game character is controlled by our gaze detection method and it can target the enemy character and shoot, which can increase the immersion and interest of game. Experimental results showed that the game and gaze detection system could be operated at real-time speed in one desktop computer and we could obtain the gaze detection accuracy of 0.88 degrees. In addition, we could know our gaze detection technology could replace the conventional mouse in the 3D first person shooting game.

Development of the Heuristic Attention Model Based on Analysis of Eye Movement of Elementary School Students on Discrimination task (변별과제에서 초등학생의 안구운동 분석을 통한 발견적 주의 모델 개발)

  • Shin, Won-Sub;Shin, Dong-Hoon
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.7
    • /
    • pp.1471-1485
    • /
    • 2013
  • The purpose of this study was to develop a HAM (Heuristic Attention Model) by analyzing the difference between eye movements according to the science achievement of elementary school students on discrimination task. Science achievement was graded by the results of the Korea national achievement test conducted in 2012 for a random sampling of classes. As an assessment tool to check discrimination task, two discrimination measure problems from TSPS (Test of Science Process Skill, developed in 1994) which were suitable for an eye tracking system were adopted. The subjects of this study were 20 students from the sixth grade who agreed to participate in the research. SMI was used to collect EMD (eye movement data). Experiment 3.2 and BeGaze 3.2 programs were used to plan experiments and analyze EMD. As a result, eye movements of participants in discrimination tasks varied greatly in counts and duration of fixation, first fixation duration, and dwell time, according to students' science achievement and difficulty of the problems. By the analysis of EMD, strategies of the students' problem-solving could be found. During problem solving, subjects' eye movements were affected by visual attention; bottom-up attention, top-down attention and convert attention, and aflunter attention. In conclusion, HAM was developed, and it is believed to help in the development of a science learning program for underachievers.

Exploring Mask Appeal: Vertical vs. Horizontal Fold Flat Masks Using Eye-Tracking (마스크 매력 탐구: 아이트래킹을 활용한 수직 접이형 대 수평 접이형 마스크 비교 분석)

  • Junsik Lee;Nan-Hee Jeong;Ji-Chan Yun;Do-Hyung Park;Se-Bum Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.271-286
    • /
    • 2023
  • The global COVID-19 pandemic has transformed face masks from situational accessories to indispensable items in daily life, prompting a shift in public perception and behavior. While the relaxation of mandatory mask-wearing regulations is underway, a significant number of individuals continue to embrace face masks, turning them into a form of personal expression and identity. This phenomenon has given rise to the Fashion Mask industry, characterized by unique designs and colors, experiencing rapid growth in the market. However, existing research on masks is predominantly focused on their efficacy in preventing infection or exploring attitudes during the pandemic, leaving a gap in understanding consumer preferences for mask design. We address this gap by investigating consumer perceptions and preferences for two prevalent mask designs-horizontal fold flat masks and vertical fold flat masks. Through a comprehensive approach involving surveys and eye-tracking experiments, we aim to unravel the subtle differences in how consumers perceive these designs. Our research questions focus on determining which design is more appealing and exploring the reasons behind any observed differences. The study's findings reveal a clear preference for vertical fold flat masks, which are not only preferred but also perceived as unique, sophisticated, three-dimensional, and lively. The eye-tracking analysis provides insights into the visual attention patterns associated with mask designs, highlighting the pivotal role of the fold line in influencing these patterns. This research contributes to the evolving understanding of masks as a fashion statement and provides valuable insights for manufacturers and marketers in the Fashion Mask industry. The results have implications beyond the pandemic, emphasizing the importance of design elements in sustaining consumer interest in face masks.

ROS-based control for a robot manipulator with a demonstration of the ball-on-plate task

  • Khan, Khasim A.;Konda, Revanth R.;Ryu, Ji-Chul
    • Advances in robotics research
    • /
    • v.2 no.2
    • /
    • pp.113-127
    • /
    • 2018
  • Robotics and automation are rapidly growing in the industries replacing human labor. The idea of robots replacing humans is positively influencing the business thereby increasing its scope of research. This paper discusses the development of an experimental platform controlled by a robotic arm through Robot Operating System (ROS). ROS is an open source platform over an existing operating system providing various types of robots with advanced capabilities from an operating system to low-level control. We aim in this work to control a 7-DOF manipulator arm (Robai Cyton Gamma 300) equipped with an external vision camera system through ROS and demonstrate the task of balancing a ball on a plate-type end effector. In order to perform feedback control of the balancing task, the ball is designed to be tracked using a camera (Sony PlayStation Eye) through a tracking algorithm written in C++ using OpenCV libraries. The joint actuators of the robot are servo motors (Dynamixel) and these motors are directly controlled through a low-level control algorithm. To simplify the control, the system is modeled such that the plate has two-axis linearized motion. The developed system along with the proposed approaches could be used for more complicated tasks requiring more number of joint control as well as for a testbed for students to learn ROS with control theories in robotics.

A Study of Pre-Service Secondary Science Teacher's Conceptual Understanding on Carbon Neutral: Focused on Eye Tracking System (탄소중립에 관한 중등 과학 예비교사들의 개념 이해 연구 : 시선추적시스템을 중심으로)

  • Younjeong Heo;Shin Han;Hyoungbum Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.2
    • /
    • pp.261-275
    • /
    • 2023
  • The purpose of this study was to analyze the conceptual understanding of carbon neutrality among secondary school science pre-service teachers, as well as to identify gaze patterns in visual materials. For this study, gaze tracking data of 20 pre-service secondary school science teachers were analyzed. Through this, the levels of conceptual understanding of carbon neutrality were categorized for the participants, and differences in gaze patterns were analyzed based on the degree of conceptual understanding of carbon neutrality. The research findings are as follows. First, as a result of performing modeling activities to predict carbon emissions and removals until 2100 using the concept of '2050 carbon neutrality,' 50% of the participants held a conception that carbon emissions would continue to increase. Additionally, 25% of the participants did not properly understand the causal relationship between net carbon dioxide emissions and cumulative concentrations. Second, the gaze movements of the participants regarding visual materials related to carbon neutrality were significantly influenced by the information presented in the text area, and in the case of graphs, the focus was mainly on the data area. Moreover, when visual data with the same function and category were arranged, participants showed the most interest in materials explaining concepts or visual data placed on the left side. This implies a preference for specific positions or orders. Participants with lower levels of conceptual understanding and inadequate grasp of causal relationships among elements exhibited notably reduced concentration and overall gaze flow. These findings suggest that conceptual understanding of carbon neutrality including climate change and natural disaster significantly influences interest in and engagement with visual materials.

비행안전을 고려한 조종사 안구움직임(visual search)의 특성에 관한 연구

  • 최정현;김영준
    • Proceedings of the ESK Conference
    • /
    • 1997.10a
    • /
    • pp.487-497
    • /
    • 1997
  • 본 연구는 F-16 Simulator에서 모의비행하는 조종사를 그 대상으로 하였고 피실험자의 시역에서 물체에 대한 상대적인 눈의 움직임을 분석하고영상처리기법을 사용하는 EL-MAR의 eye-tracking system을 사용하여비행시 cross-check 하는 좆ㅇ사의 준 위치를 정확히 측정하고 안구움직임의 특성을 파악하였다. 비행상황을 정상상황, 비상상황으로 나누고 조종사는 숙련급, 비숙련금조종사로 구분하여측정, 분석하였다. 정상비행상황에서는 숙련급조종사가 비숙련급조 종사보다 계기에 머문시간은 짧고 계기의 관찰횟수는 많았으며 비상비행상황에서는 두 그룹의 조종사가 중점적으로 보는 계기가 달랐다. 조종사들이 많이 관찰하는 계기를 살펴보면, 계기에 머문시간에서는 HSI-ADI-ASI-ALT순으로 나타났고 계기의 관찰횟수에서는 ADI-HSI-ASI-ALT순으로 나타났다.

  • PDF

Eye Tracking Method for Driver Drowsiness Detection System (운전자 졸음 감지 시스템을 위한 눈 추적 방법)

  • Kim, Jeonguk;Zhang, Xingjie;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.159-160
    • /
    • 2016
  • 운전자 졸음 감지 시스템에서는 운전자의 눈의 위치를 정확하게 검출하고 추적하는 것이 중요하다. 각막 반사를 이용한 눈동자의 명암 차를 이용하여 동공의 위치를 정확하게 검출할 수 있다. 그러나 눈을 깜빡이는 순간에는 각막 반사 현상이 나타나지 않아 눈 검출에 실패하게 된다. 본 논문에서는 각막 반사와 템플릿 매칭을 이용하여 운전자가 눈을 깜빡이는 상황에도 지속적으로 두 눈의 위치를 정확하게 검출할 수 있는 시스템을 제안한다.

  • PDF