• Title/Summary/Keyword: extrusion processing

Search Result 334, Processing Time 0.023 seconds

Finite Element Analysis of Axisymmetric Hot Extrusion Through Continuous Dies Using the Arbitrary Lagrangian-Eulerian Description (곡면금형을 통한 축대창 열간 압출의 ALE 유한요소 해석)

  • 강연식;양동열
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.69-78
    • /
    • 1995
  • The arbitrary Lagrangian-Eulerian(ALE) finite element analysis is applied to the axisymmetric hot extrusion through continuous dies. In order to simulate hot forming problems, an ALE scheme for temperature analysis is proposed. The computed results are compared with experimental results as with those by pure Lagrangian method. In the present study mesh control is accomplished by the use of isoparametric mapping of quadrilaterals.

  • PDF

An ALE Finite Element Formulation for Rigid-Viscoplatic Materials and Its Application to Axisymmetric Extrusion through Square Dies (ALE 묘사에 근거한 강-점소성 유한요소 수식화와 축대칭 평금형 압출에의 적용)

  • 강연식;양동열
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.156-166
    • /
    • 1994
  • An arbitrary Lagrangian-Eulerian (ALE) finite element method has been developed. The finite element formation is derived and implemented for rigid-viscoplastic materials. The developed computer program is applied to the analysis of axisymmetric square die extrusion, which has many difficulties with updated Lagrangian approach. The results are compared with those from updated Largrangian approach. The results are compared with those from updated Lagrangian finite element program. Updating scheme of time dependent variables and mesh control are also examined.

  • PDF

Finite Element Analysis and Experiment of Combined Extrusion in Semi-Solid State (반용융 복합압출 제품의 성형실험 및 유한요소해석)

  • 최재찬;박준홍;김병민
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.313-318
    • /
    • 1999
  • Many products related to automobile and airplane industry have been manufactured by semi-solid forging. In this paper finite element analysis of product by combined extrusion in semi-solid state was performed and its experimental verification using A356 was conducted. distribution of solid fraction was analyzed and compared with the experimental microstructure in the product. In addition, distribution of temperature in the product was analysed by finite element method.

  • PDF

Die Shape Optimal Design in Bimetal Extrusion by The Finite Element Method (유한요소법에 의한 이중 금속봉 압출 공정의 금형 형상 최적설계)

  • 변상민;황상무
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.302-319
    • /
    • 1994
  • A new approach to die shape optimal design in bimetal extrusion of rods is presented. In this approach, the design problem is formulated as a constrained optimization problem incorporated with the finite element model, and optimization of the die shape is conducted on the basis of the design sensitivities. The combinations of the core and sleeve materials.

  • PDF

Optimal Design of Dimension of Extrusion Die with Single Stress Ring (단순보강링을 갖는 압출 금형의 치수 최적설계)

  • 안성찬;임용택
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.363-370
    • /
    • 2002
  • In this study, an optimal design technique was investigated for determining appropriate dimensions of components of the die set used in the extrusion process. For this, an axi-symmetric elastic finite element program for the analysis of deformation of the shrink fitted die set was developed with the Lagrange multiplier method to implement the constraint condition of shrink fit of stress ring. By coupling the rigid-viscoplastic analysis of extrusion process by CAMPform and elastic analysis of the die set, the optimization study was made by employing optimization program DOT. Considering the various assembly conditions, optimal design was determined for a single stress ring case. It is construed that the proposed design method can be beneficial for improving the tool life of cold extrusion die set at practice.

Material Flow and Surface Expansion in Radial-Backward Extrusion (레이디얼 압출과 연계된 후방압출의 소재유동과 표면확장)

  • 고병두;최호준;장동환;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.251-258
    • /
    • 2003
  • The paper deals with an analysis of an extrusion process with a divided material flow in a combined radial - backward extrusion. The paper discusses the influences of tool geometry such as punch nose angle, relative gap height, die comer radius on material flow and surface expansion into can and flange region. To analyze the process, numerical simulations by the FEM and experiment, an Al alloy as a model material have been performed. Based on the results, the influence of design parameters on the distribution of divided material flow and surface expansion are obtained.

A Theoretical and Experimental Study on the Plastic Flow in Porthole Extrusion (포트홀 압출의 소성유동에 대한 이론 및 실험적 연구)

  • 한철호;임헌조
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.485-492
    • /
    • 2001
  • The paper is concerned with plastic flow in the port and welding chamber of rectangular hollow section extrusion through the porthole die. The extrusion process is analyzed by numerical simulation and experiments in the unsteady state. The effects of types of inlet with and without taper on the flow and extrusion load are mainly discussed and compared by FEA and experiments. Experiments are carried out by using the plasticine as a model material at room temperature. To visualize the plastic flow in the extrusion process, some split dies and punches are designed and manufactured by EDM. The theoretical predictions by FEM are reasonable agreements with experimental results on the deformed configurations and welding lines.

  • PDF

Automatic Surface Generation for Extrusion Die of Non-symmetric H-and U-shaped sections (비축대칭 H-형 및 U-형상의 압출금형 곡면의 자동생성)

  • 유동진;임종훈;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.572-581
    • /
    • 2003
  • In this paper, an automatic surface construction method based on B-spline surface and scalar field theory is proposed to generate the extrusion die surface of non-symmetric H-and U-shaped sections. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u-and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections. To verify the validity of the proposed method, automatic surface generation is carried out for extrusion die of non-symmetric H-and U-shaped sections.

An Experimental Study in the Forward-Backward Extrusion for the Cup-Cup shape (상하 컵형인 전후방압출공정에 관한 실험적 연구)

  • 김영득;한철호
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.291-301
    • /
    • 1994
  • In the simultaneous forward-backward extrusion the effects of some process variables including area reduction, stroke advance, materials(Al 2024 and commercial pure copper) on the extrusion load, plastic flow and height ratio of upper to lower extruded parts are experimentally investigated and analyzed. Grid-marking technique is employed to visualize the plastic flow. The influence of using split and original specimen on the extrusion load and height ratio is evaluated by experiments. Experimental results show that the plastic flow if oriented to the part of lower area reduction in the begining but it is usually variated during the overall process. The configurations of plastic deformation and plastic flow are dependent on the working materials and the lubricational conditions.

  • PDF

Effects of Processed Barley on Growth Performance and Ileal Digestibility of Growing Pigs

  • Chu, K.S.;Kim, J.H.;Chae, B.J.;Chung, Y.K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.3
    • /
    • pp.249-254
    • /
    • 1998
  • Two experiments were conducted to evaluate the effects of processing of barley on the growth performance and ileal and fecal digestibility of growing pigs. In Exp. 1, a total of 20 cannulated pigs (10.80 kg BW) were allotted to four treatments. Treatments were coarse ground barley as a control (CON), finely ground barley (FINE), extruded barley (EXT) and enzyme supplemented coarse ground barley (ENZ). In Exp. 2, a total of 100 growing pigs (36.50 kg BW) were allocated to the same treatments in completely randomized block design based on sex and body weight. In the first trial, pigs fed extruded barley showed significantly higher crude protein digestibility over pigs fed finely ground barley (p < 0.05). Pigs fed finely ground barley generally showed lower nutrients digestibility. Extrusion and ${\beta}$-glucanase supplementation showed a trend to improve nutrients digestibility. However, fine grinding rather reduced nutrients digestibility. The similar trend was found in the digestibility of essential amino acids. Fine grinding of barley significantly reduced amino acids digestibility. Extrusion and enzyme supplementation were found to improve amino acids digestibility of barley in growing pigs. In the growth trial, pigs fed extruded barley grew significantly faster than any other processed barley fed pigs. And extrusion of barley significantly improved feed/gain of pigs (p < 0.05). Fine grinding of barley and enzyme supplementation did not improve growth performance of pigs. In conclusion, fine grinding and enzyme supplementation does not appear to be an economical feed processing for growing pigs when barley is employed in the diets, while extrusion can be recommended as an effective feed processing technique for barley.