• Title/Summary/Keyword: extreme temperatures

Search Result 165, Processing Time 0.025 seconds

Estimation for the Change of Daily Maxima Temperature (일일 최고기온의 변화에 대한 추정)

  • Ko, Wang-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • This investigation on the change of the daily maxima temperature in Seoul, Daegu, Chunchen, Youngchen was triggered by news items such as the earth is getting warmer and a recent news item that said that Korea is getting warmer due to this climatic change. A statistical analysis on the daily maxima for June over this period in Seoul revealed a positive trend of 1.1190 centigrade over the 45 years, a change of 0.0249 degrees annually. Due to the large variation on these maximum temperatures, one can raise the question on the significance of this increase. To check the goodness of fit of the proposed extreme value model, we shown a Q-Q plot of the observed quantiles against the simulated quantiles and a probability plot. And we calculated statistics each month and a tolerance limit. This is tested through simulating a large number of similar datasets from an Extreme Value distribution which described the observed data very well. Only 0.02% of the simulated datasets showed an increase of this degrees or larger, meaning that the probability is very low for such an event to occur.

Study on the Cooling Mechanism in a Cryogenic Cooling System (극저온 냉각 챔버 내 냉각 메커니즘 연구)

  • SEONGWOO LEE;YOUNGSANG NA;YOUNGKYUN KIM;SEUNGMIN JEON;JUNHO LEE;SUNGWOONG CHOI
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.2
    • /
    • pp.146-151
    • /
    • 2024
  • The demand for research on materials with excellent cryogenic strength and ductility has been increasing, particularly for applications such as liquid hydrogen (20 K) storage tanks. To effectively utilize liquid hydrogen, a system capable of maintaining and operating at 20 K is essential. Therefore, preliminary research and verification of the cooling system are crucial. In this study, a heat transfer analysis was conducted on a cooling system to meet the cryogenic environment requirements for cryogenic hydrogen chamber, which are conducted at liquid helium temperatures (4 K). The cooling mechanism in a helium cooling system was examined using numerical analysis. The numerical cooling trends were compared with experimentally obtained cooling results. The good agreement between numerical and experimental results suggests that the numerical approach developed in this study is applicable over a wide range of cryogenic systems.

THERMAL EFFECTS OF EYELID IN HUMAN EYE TEMPERATURE MODEL

  • Gokul, K.C.;Gurung, D.B.;Adhikary, P.R.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.649-663
    • /
    • 2014
  • Presence of eyelid on anterior ocular surface and its thermal effects play significant role in maintaining eye temperature. In most of the literatures of thermal modeling in human eye, the eyelid is not considered as an eye component. In this paper, finite element model is developed to investigate the thermal effects of eyelid closure and opening in human eye. Based on different properties and parameter values reported in literatures, the bio-heat transfer process is simulated and compared with experimental results in steady and transient state cases. The sensitivity analysis using various ambient temperatures, evaporation rates, blood temperatures and lens thermal conductivities is carried out. The temperature values so obtained in open eye show a good agreement with past results. The closure of eyelid is found to increase/decrease the eye temperature significantly than its opening, when the parameter values are considered to be at extreme.

The Effect of Tribological Characteristics on Lubricants Properties(The 1st) (윤활유의 성질이 마모특성에 미치는 영향(제1보))

  • 오성모;이봉구
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.86-92
    • /
    • 1997
  • When Lubricants is used under severe running condition, tribological characteristics is very important. I have studied the lubricating oil viscosity, kinds of additives and lubricating oil temperatures were changed. In order to study the effect of oil temperature on the wear of the surface, the temperature of the oil was changed for the same sample. Moreover, the temperatures of three kinds of oils which have very different viscosities at room temperature, were varied while the oil viscosity was unchanged. It was shown from the test results that wear is not greatly affected by the amount of ZnDTP antiwear agent, but E-P additives are less effective against wear than ZnDTP additives. The viscosity of lubricating oil and its tempea-ature greatly affect the wear of the surface. Combining all the wear data with those of the surface strength, it was observed that the higher the load, the lower the scratch of wear, and also in the case of the same running load, the lower the wear, the longer the life of the surface strength.

  • PDF

Technology Trend of SiC CMOS Device/Process and Integrated Circuit for Extreme High-Temperature Applications (고온 동작용 SiC CMOS 소자/공정 및 집적회로 기술동향)

  • Won, J.I.;Jung, D.Y.;Cho, D.H.;Jang, H.G.;Park, K.S.;Kim, S.G.;Park, J.M.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.1-11
    • /
    • 2018
  • Several industrial applications such as space exploration, aerospace, automotive, the downhole oil and gas industry, and geothermal power plants require specific electronic systems under extremely high temperatures. For the majority of such applications, silicon-based technologies (bulk silicon, silicon-on-insulator) are limited by their maximum operating temperature. Silicon carbide (SiC) has been recognized as one of the prime candidates for providing the desired semiconductor in extremely high-temperature applications. In addition, it has become particularly interesting owing to a Si-compatible process technology for dedicated devices and integrated circuits. This paper briefly introduces a variety of SiC-based integrated circuits for use under extremely high temperatures and covers the technology trend of SiC CMOS devices and processes including the useful implementation of SiC ICs.

Synoptic Climatic Patterns for Winter Extreme Low Temperature Events in the Republic of Korea (우리나라 겨울철 극한저온현상 발생 시 종관 기후 패턴)

  • Choi, Gwangyong;Kim, Junsu
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • The present study aims to characterize the synoptic climatic patterns of winter extreme low temperature events occurred in different regions of Korea based on daily temperature data observed at 61 weather stations under the supervision of the Korea Meteorological Administation and NCEP/NCAR reanalysis I data for the recent 40 years (1973~2012) period. Analyses of daily maximum and minimum temperatures below 10th percentile thresholds show that high frequencies of winter extreme low temperature events appear across the entire regions of Korea or in either the western or eastern half region divided by major mountain ridges at the 2~7 dayintervals particularly in the first half of the winter period (before mid-January). Composite analyses of surface synoptic climatic data including sea level pressure and wind vector reveal that 13 regional types of winter extreme low temperature events in Korea are closely associated with the relative location and intensity of both the Siberian high pressure and the Aleutian low pressure systems as well as major mountain ridges. Investigations of mid-troposphere (500 hPa) synoptic climatic charts demonstrate that the blocking-like upper troposphere low pressure system advecting the cold air from the Arctic toward the Korean Peninsula may provide favorable synoptic conditions for the outbreaks of winter extreme low temperature events in Korea. These results indicate that the monitoring of synoptic scale climatic systems in East Asia including the Siberian high pressure system, the Aleutian low pressure system and upper level blocking system is critical to the improvement of the predictability of winter extreme low temperature events in Korea.

  • PDF

Isolation and Characterization of Halophilic Kocuria salsicia Strains from Cheese Brine

  • Youn, Hye-Young;Seo, Kun-Ho
    • Food Science of Animal Resources
    • /
    • v.42 no.2
    • /
    • pp.252-265
    • /
    • 2022
  • Kocuria salsicia can survive in extreme environments and cause infections, including catheter-related bacteremia, in humans. Here, we investigated and evaluated the characteristics of nine K. salsicia strains (KS1-KS9) isolated from cheese brine from a farmstead cheese-manufacturing plant in Korea from June to December, 2020. Staphylococcus aureus American Type Culture Collection (ATCC) 29213 was used as a positive control in the growth curve analysis and biofilm-formation assays. All K. salsicia isolates showed growth at 15% salt concentration and temperatures of 15℃, 25℃, 30℃, 37℃, and 42℃. KS6 and KS8 showed growth at 5℃, suggesting that they are potential psychrotrophs. In the biofilm-formation analysis via crystal violet staining, KS6 exhibited the highest biofilm-forming ability at various temperatures and media [phosphate buffered saline, nutrient broth (NB), and NB containing 15% sodium chloride]. At 25℃ and 30℃, KS3, KS6, and KS8 showed higher biofilm-forming ability than S. aureus ATCC 29213. The antimicrobial resistance of the isolates was evaluated using the VITEK® 2 system; most isolates were resistant to marbofloxacin and nitrofurantoin (both 9/9, 100%), followed by enrofloxacin (7/9, 77.8%). Five of the nine isolates (5/9, 55.6%) showed multidrug resistance. Our study reports the abilities of K. salsicia to grow in the presence of high salt concentrations and at relatively low temperatures, along with its multidrug resistance and tendency to form biofilms.

The Impact of Climate Change on Fire

  • Eun-Hee JEON;Eun-Gu, HAM
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.4
    • /
    • pp.15-20
    • /
    • 2024
  • Purpose: Climate change is greatly affecting the frequency and intensity of fires around the world. The main effects of climate change on fires are rising temperatures, dry seasons and extreme droughts, changes in precipitation, increased strong winds, extended fire danger periods, and changes in natural ecosystems. Several factors due to climate change are increasing the risk of large-scale fires, such as wildfires. Research design, data and methodology: Rising temperatures caused by climate change will make forests and grasslands drier, make it easier for wildfires to occur in drier environments and spread quickly to wider areas, and the generated wildfires will release large amounts of greenhouse gases into the atmosphere, such as carbon dioxide (CO2), and the released greenhouse gases will strengthen the global greenhouse effect, further raising the temperature. As temperatures rise, the risk of wildfires increases in drier environments, and this process is repeated, leading to a vicious cycle of intensifying climate change as more fires occur and more greenhouse gases are released. Results: In conclusion, climate change is increasing the risk of fire occurrence and this phenomenon is expected to become more frequent and severe in the future. Conclusions: In order to cope with the increasing fire risk caused by climate change, fire prevention and management. Fire detection and response systems need to be strengthened, supportive policies and international cooperation are needed to restore ecosystems, and these measures, along with fire prevention, management and countermeasures, should take into account long-term climate change and adaptation as well as short-term responses.

Investigation on the Vibrating Wire Strain Gauges for the Evaluation of Pipeline Safety in Extreme Cold Region (극한지 파이프라인 안정성 평가를 위한 진동현식 변형률 게이지 연구)

  • Kim, Hak Joon
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.583-591
    • /
    • 2016
  • Vibrating wire (VW) strain gauges are widely used for the evaluation of pipeline safety in extreme cold region. The development of VW strain gauges for the low temperature environment is necessary because of the high cost of gauges sold in developed countries. Thermistors embedded in the regular VW strain gauges and PT 100 sensors embedded in the gauges specially manufactured for this study have gone through credibility tests for temperature measurements. The use of PT 100 is recommended at low temperature environments because thermistors have low credibility at temperatures below $-15^{\circ}C$. Strain measurements using regular VW strain gauges also show low accuracies as temperature goes down. VW strain gauges manufactured using inconel give high credibility of strain measurements at low temperatures. More reliable VW strain gauges for the low temperature environment will be developed in the near future.

Mechanical Characteristics of Stainless Steel TP 304, TP 316 under Low Temperature Environment (저온 기계 재료용 TP 304, TP 316 소재의 저온거동 특성 평가)

  • Cho, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.125-130
    • /
    • 2017
  • Automotive materials and plant modules need to be prepared for freezing parts to operate in extreme areas such as Eastern Europe, Russia, and Canada. However, the only thing that has been done for ultra-qualifying materials for extremely low operating materials is that only the effects at low temperatures are conducted at room temperature, and the effects at low temperatures are only identified at low speeds. Therefore, this study examined the low-temperature characteristics of materials by conducting comparative tests on the mechanical properties of the room at the temperature and temperature of TP304 and TP316 materials, which are the most common materials.