• Title/Summary/Keyword: extraction solvent method

Search Result 599, Processing Time 0.03 seconds

A Study on the Component Analysis of Sappan Wood Extracts (소목 추출물의 구조분석)

  • 이상락;김인회;남성우
    • Textile Coloration and Finishing
    • /
    • v.14 no.4
    • /
    • pp.229-239
    • /
    • 2002
  • Colorants were extracted from the heartwood of sappan lin. with MeOH under reflux, and the concentrate or the powder of dye was prepared by low pressure concentration method using suitable organic solvent. Various components were isolated from sappan wood, and the chemical structure and mechanism of compound having the excellent antibacterial and deodorization properties were analyzed. The results obtained are as follows ; The seventeen components of sappan wood were seperated by HPLC chromatography, and the five components among them were existed more than 6% and the other components were existed lower than 0.6%. The resolving powers of the non-polar solvent and polar solvent systems were evaluated by their ability to resolve the samples. It showed that chloroform-methanol-water(800:150:10) system has the best resolving power. Although the seperation rate is very slow, polyamide C-100 column chromatography gives a clear seperation of sappan wood. On the basis of the spectrometric data such as IR, UV, $GC-Mass,\;^1H-NMR,\;^{13}C-NMR\;and\;^1H-^{ 13}C-NMR$, the chemical structure of compound haying the excellent antibacterial and deodorization properties was established as brazilin containing the functional groups such as two quaternary carbon, one benzyl carbon, methylene contiguous to oxygen and methylene caused by oxygen atom.

Determination of Trace Mo(VI) in Seawater Samples by Ion Pair Formation and Solvent Extraction (이온쌍 형성-용매추출에 의한 해수 중 극미량 Mo(VI)의 정량)

  • Kim, Young-Sang;Nho, Seung-Gu;Choi, Jong-Moon
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.329-334
    • /
    • 1993
  • The formation of Mo(VI)-alizarin red S chelate ion its extraction into an organic solvent by ion-pairing for the separarive determination of trace Mo(VI) in natural water was applied in seawater samples. Removed Fe(III) and Zn(II), and Cu(II) by precipitating with anthranilic acid at pH 4.0 and 2.0, seawater 100mL was sampled in 250mL separatory funnel. After Mo(VI)-ARS chelate ion was formed by adding 0.01M alizarin red S solution 1.0mL to the water sample of pH 4.6, 0.6% aliquat-336 chloroform solution 10mL was added and the solution was vigorously shaked for about 30 seconds to form the ion-pair between Mo(VI)-ARS and aliquat-336 perfectly. The solution was stood for about 30 minutes. And the organic phase was taken for the absorbance measurement of the ion-pair at 520nm. The content of Mo(VI) was obtained from the standard calibration curve. Several extraction conditions such as pH, adding amounts of alizarin red S and aliquat-336, and shaking and standing times were optimized and the interferences and release of concomitant ions was also studied. This procedure was applied to the analysis of Eastern and Yellow seawaters. It could be confirmed from the recoveries of over 85% in samples spiked with a given amount of Mo(VI) that this method was also quantitative in the determination of trace Mo(VI) in a seawater.

  • PDF

Solvent Extraction of Trace Mo(VI) in Natural Water Samples by Chelation and Ion-pairing (킬레이트 및 이온쌍 형성을 이용한 자연수 중 극미량 Mo(VI)의 용매추출)

  • Kim, Young-Sang;Nho, Seung-Gu;Choi, Jong-Moon;Choi, Hee-Seon
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.289-296
    • /
    • 1993
  • The formation of Mo(VI)-alizarin red S chelate ion and its extraction into an organic solvent by ion-pairing were studied for the separative determination of trace Mo(VI) in natural water samples. Natural water 100mL was sampled in 250mL separatory funnel. After Mo(VI)-ARS chelate ion was formed by adding 0.01M alizarin red S solution 0.5mL to the water sample of pH 4.0, 0.2% aliquat-336 chloroform solution 10mL was added and the solution was vigorously shaked for about 30 seconds to from the ion-pair between Mo(VI)-ARS and aliquat-336, completely. The solution was stood for about 90 minutes. And the organic phase was taken for the absorbance measurement of the ion-pair at 520 nm. The content of Mo(VI) in sample was obtained from the standard calibration curve. Several extraction conditions such as pH, adding amounts of alizarin red S and aliquat-336, and shaking and standing times were optimized. This procedure was applied to the analysis of river and tap waters. It could be confirmed from the recoveries of over 99% in samples spiked with a given amount of Mo(VI) that this method was quantitiative in the determination of trace Mo(VI) in a natural water.

  • PDF

Recovery of high-purity phosphoric acid from the waste acids in semiconductor manufacturing process (반도체(半導體) 제조공정(製造工程)에서 발생하는 혼산폐액(混酸廢液)으로부터 고순도(高純度) 인산회수(燐酸回收))

  • Park, Sung-Kook;Roh, Yu-Mi;Lee, Sang-Gil;Kim, Ju-Yup;Shin, Chang-Hoon;Kim, Jun-Young;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.26-32
    • /
    • 2006
  • The waste solution discharged from the LCD manufacturing process contains acids like nitric, acetic and phosphoric acid and metal ions such as Al, Mo and other impurities. It is important to remove impurities less than 1 ppm in phosphoric acid to reuse as an etchant because the residual impurities even in sub-ppm concentration in semiconductor materials play a major role on the electronic properties. In this study, a mixed system of solvent extraction, diffusion dialysis and ion-exchange was developed to commercialize in an efficient system fur recovering the high-purity phosphoric acid. By vacuum evaporation, almost 99% of nitric and acetic acid was removed. And by solvent extraction method with tri-octyl phosphate (TOP) as an extractant, the removal of acetic and nitric acid from the acid mixture was achieved effectively at the ratio A/O=1/3 with 4th stage of extraction stage. About 97.5% of Al and 36.7% of Mo were removed by diffusion dialysis. Essentially almost complete removal of metal ions and purification of high-purity phosphoric acid could be obtained by using ion exchange.

Comparison of Major Compounds in Illicii Veri Fructus by Extraction Solvents (추출용매에 따른 팔각회향의 주성분 함량비교)

  • Lee, A Yeong;Kim, Hyo Seon;Choi, Goya;Chun, Jin Mi;Moon, Byeong Cheol;Kim, Ho Kyoung
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.47-51
    • /
    • 2013
  • Objectives : The Illicii Veri Fructus was not only traditional medicine but also food in Asia. The aim of this study was selection of optimum solvent in the fruit of Illicii Veri Fructus because an appropriate solvent affect a medicinal effect. Methods : Illicii Veri Fructus was carried out ultrasonic-assisted extraction as various solvents. Two main compounds, p-anisaldehyde and anethole, were successfully analyzed by high performance liquid chromatography-photodiode array detector (HPLC-PDA) and carried out method validation according to ICH guideline. The optimum solvent selected by comparing with yields of two main ingredients. Results : The p-anisaldehyde and anethole were detected at approximately 8.0 min and 19.8 min, respectively. It was all below 5.0% that RSD of retention time and peak area for two main peaks. Calibration curves of two compounds were good linearity as $R^2$ >0.9999. All of the precisions and accuracy were good intra-day and inter-day as below 5.0% RSD. Limited of detection (LOD) of p-anisaldehyde and anethole were analyzed as $0.134{\mu}g/mL$ and $4.286{\mu}g$, respectively. Limited of quantification (LOQ) of two compounds were $0.407{\mu}g$ and $12.989{\mu}g$, respectively. As a result of this study, p-anisladehyde was detected as 0.209 ~ 0.467%, however anethole was not detected in the distilled water. Conclusions : Anethole was main component as 5.329 ~ 6.815% except for water extraction. Methanol extraction among various solvents was detected the highest contents of p-anisaldehyde and anethole as 0.467(${\pm}0.008$)% and 6.815(${\pm}0.220$)%, respectively.

Spectrophotometric Determination of Chlorpheniramine Maleate with Methyl Orange (메칠오렌지에 의한 말레인산클로르페니라민의 분광광도 정량)

  • Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.16 no.4
    • /
    • pp.139-147
    • /
    • 1986
  • A singly charged methyl orange(MO) anion was found to be extracted with chlorpheniramine maleate(CPM) as a 1 : 1 complex in chloroform. Of various solvents, MO-chloroform system gave a yellow color for CPM, while in the absence of CPM, an organic phase showed almost no color. In this way, the spectrophotometric method was investigated for the determination of CPM by solvent extraction. The addition of alcoholic bolic acid solution to the solvent extract gave a higher color stability and transparency at least 5 days, but the extract alone lost its color intensity significantly. CPM is determined by measuring the absorbance of the extracts over a range of $1{\sim}7{\times}10^{-4}M\;(39{\sim}273\;{\mu}g/ml)$ in aqueous solution at 423 nm. The molar absorptivity was $2.26{\times}10^3\;l,\;mol^{-1},\;cm^{-1}$. The absorbance of the extract was constant in the range of pH $3.7{\sim}4.6$. This novel method was applied for the determination of CPM in artificial and commercial preparations in comparison with the analytical method of CPM tablets in K.P.IV. The results obtained showed that the former was better in accuracy and time consumption than the latter.

  • PDF

A Simple and Modified Photometric Method for Measuring Lipase Activity (리파제 활성측정을 위한 간편한 비색정량법)

  • Kim, Chul-Jin;Cheigh, Hong-Sik;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.251-253
    • /
    • 1984
  • A simple and modified method is developed to determine a lipase activity. A linear relationship exists between the color intensity and the free fatty acid liberated by enzyme action. The range of determination is from 0.05 to $1.5\;{\mu}moles$ of long chain fatty acid (oleic acid) and 0.2 to $2.0\;{\mu}moles$ of short chain fatty acid (caproic acid). The cumbersome procedure of the removal of the upper aqueous phase which was required in the previous copper soap extraction method was eliminated by the movement of solvent phase to upper phase in the respective biphasic system with a mixture solvent (chloroform: n-hexane:ethanol = 49:49:2) and copper reagent saturated with sodium chloride.

  • PDF

Optimization of Combined Process of Enzymatic Hydrolysis and Solvent Extraction for Production of Lycopene from Elaeagnus umbellata (보리수 나무 열매로부터 라이코펜 생산을 위한 효소 분해 및 유기용매 추출 복합 공정의 최적화)

  • Oh, Yun Hye;Lee, Ju Mi;Chae, Hee Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.293-299
    • /
    • 2020
  • This study was undertaken to optimize combining the processes of enzymatic hydrolysis and extraction for lycopene production from autumn olive berry. The autumn olive berry was pulverized and suspended in water, followed by treatment with various hydrolytic enzymes including Ceremix, Celluclast, AMG, Viscozyme, Pectinex, Promozyme, Ultraflo and Tunicase. Reaction solutions were subjected to extraction by applying different organic solvents including acetone, ethyl acetate, hexane and chloroform. Highest yields of lycopene extraction were obtained with the Ceremix (hydrolysis enzyme) and chloroform (extraction solvent) combination. Subsequently, using this ideal combination, enzymatic hydrolysis conditions, including enzyme concentration, pH and temperature, were statistically optimized to 0.58%, 5.5 and 54.4℃, respectively, by applying the response surface method. The lycopene extraction yield increased 2.3-fold (22.6 mg/100g) by using the selected combined process. We propose that these results could be used for the future development of bioactive materials required for bio-health care products.

Analysis of volatile compounds and metals in essential oil and solvent extracts of Amomi Fructus (사인으로부터 추출한 정유와 용매 추출물의 휘발성 물질 및 금속성분 분석)

  • Lee, Sam-Keun;Eum, Chul Hun;Son, Chang-Gue
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.436-445
    • /
    • 2015
  • Amomi Fructus with anti-oxidative activity was chosen and essential oil was obtained by SDE (simultaneous distillation extraction), and 39 constituents were determined by GC-MS (gas chromatography-mass spectrometry). Major components were camphor, borneol acetate, borneol, D-limonene and camphene. Three solvent extracts such as hexanes, diethyl ether and methylene chloride from Amomi Fructus were obtained. These were analyzed by GC-MS and 4 more constituents were identified in addition to 39 components discovered in essential oil. Five major components such as camphor, borneol acetate, borneol, D-limonene and camphene were also detected, however the relative peak percents of those components were different from those of constituents in essential oil. To estimate the kind and the amount of materials evaporated at certain temperature and conditions from essential oil and solvent extracts, dynamic headspace apparatus was used and materials evaporated and trapped at certain conditions were analyzed by GC-MS. Recovery yield of SDE method from Amomi Fructus was measured by using camphor and standard calibration solution of camphor methanol solution and, the yield was 82.0%. Content of Hg was measured by mercury analyzer and contents of Cd, Pb, Cr, Mn, Co, Ni, Cu and Zn in Amomi Fructus, essential oils and solvent extracts were determined by ICP-MS (Inductively coupled plasma-mass spectrometer). Pb, Cd and Hg were measured in the concentration of 0.72 mg/kg, <0.10 mg/kg and 0.0023 mg/kg, respectively and these were below permission level of purity test. Contents of Mn, Cu and Zn in Amomi Fructus were 213 mg/kg, 8.29 mg/kg and 31.0 mg/kg, respectively and which were relatively higher than other metals such as Cr, Co and Ni. Metals such as Mn (0.65 ~ 9.08 mg/kg), Cu (1.16 ~ 4.40 mg/kg) and Zn (1.10 ~ 3.80 mg/kg) in essential oil and solvent extracts were detected. At this point it is not clear that the metals were cross-contaminated in the course of treating Amomi Fructus or metals were contained in Amomi Fructus. The influence evaluation toward biological model study of these metals in essential oil and solvent extracts will be needed.

Improved Method for Increasing of the Oil Yields in Grape Seed (포도씨 기름의 수율증진을 위한 추출 방법 개선)

  • Kang, Myung-Hwa;Chung, Hae-Kyoung;Song, Eun-Seung;Park, Won-Jong
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.931-934
    • /
    • 2002
  • To establish the optimal conditions for increasing oil yields from grape seed, extraction solvent, extraction time, and temperature were examined. Using grinding, grinding and roasting, grinding and steaming, and grinding, roasting, and steaming methods. Pressing extraction method resulted in 34.0% oil yield. Grinding and roasting, grinding and steaming, and grinding, roasting, and steaming gave 64.3, 63.0, and 65.6% yield, respectively. Ether solvent treatment resulted in 77.4 and 80.9% recoveries after 24 and 48 h static, respectively. The results of sensory evaluation revealed, oils extracted under optimal condition showed the best flavor, aroma, and whor, followed by grinding, grinding and roasting, grinding, roasting, and steaming, and grinding and steaming. Taking these results together, the optimal methods for oils extraction from grape seed were as follows: grape seed ${\rightarrow}$ washing ${\rightarrow}$ drying ${\rightarrow}$ roasting ($95{\sim}100^{\circ}C$ for 20 min) ${\rightarrow}$ cooling (room temperature) grinding ${\rightarrow}$ (0.5 mm>) ${\rightarrow}$ steaming ($0.8{\sim}0.9\;kg{\cdot}f/cm^2$ for 10 min) ${\rightarrow}$ pressing ($1st\;400\;kg/cm^2\;for\;2{\sim}3\;min,\;2^{nd}\;550{\sim}600\;/cm^2$ for 10 min, $3^{rd}\;700kg/cm^2$ for 60 min) ${\rightarrow}$ oils (yield $;85{\sim}90%$).