• Title/Summary/Keyword: extraction of feature

Search Result 2,579, Processing Time 0.027 seconds

Application of CSP Filter to Differentiate EEG Output with Variation of Muscle Activity in the Left and Right Arms (좌우 양팔의 근육 활성도 변화에 따른 EEG 출력 구분을 위한 CSP 필터의 적용)

  • Kang, Byung-Jun;Jeon, Bu-Il;Cho, Hyun-Chan
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.654-660
    • /
    • 2020
  • Through the output of brain waves during muscle operation, this paper checks whether it is possible to find characteristic vectors of brain waves that are capable of dividing left and right movements by extracting brain waves in specific areas of muscle signal output that include the motion of the left and right muscles or the will of the user within EEG signals, where uncertainties exist considerably. A typical surface EMG and noninvasive brain wave extraction method does not exist to distinguish whether the signal is a motion through the degree of ionization by internal neurotransmitter and the magnitude of electrical conductivity. In the case of joint and motor control through normal robot control systems or electrical signals, signals that can be controlled by the transmission and feedback control of specific signals can be identified. However, the human body lacks evidence to find the exact protocols between the brain and the muscles. Therefore, in this paper, efficiency is verified by utilizing the results of application of CSP (Common Spatial Pattern) filter to verify that the left-hand and right-hand signals can be extracted through brainwave analysis when the subject's behavior is performed. In addition, we propose ways to obtain data through experimental design for verification, to verify the change in results with or without filter application, and to increase the accuracy of the classification.

A Study of Feature-Extraction from the Specifically Intended Product Designs (제품의 특성추출을 통한 디자인 적용 방법에 관한 연구)

  • Hyoung, Sung-Eun;Cho, Un-Dea;Cho, Kwang-Soo
    • Science of Emotion and Sensibility
    • /
    • v.10 no.1
    • /
    • pp.87-98
    • /
    • 2007
  • The aim of this study is to grasp the features of the object which reveals its own specific purposes, and to apply them to the product concept and design forms when designers develop products. For this study, the subjects of the experiment were chosen to fill out a basic questionnaire, and an image analysis of them was performed. After the analysis, the functional design elements of the subjects were extracted and coded. They preyed the correlation between the results of the image analysis and the characteristics of the subjects. The questionnaire was carried out to determine the characteristics of the subjects. As the features of specific products were extracted through this experiment, they can be used as basic data to analyze consumer needs and to better understand the products when we design for them. This can be useful fundamental data enabling designers to understand products easily and to establish concepts for their designs. In the case of the MP3 player in this study, the results of the image analysis of it are turned out to be sound quality, compatibility, portability, employment, interface, and personality. Their respective related features were investigated as well. The important features of designing the MP3 player were presented. Through this fundamental study, it will be possible to understand consumer's needs more effectively, which will bring about the development of the fundamental basis of various fields in design.

  • PDF

Diagnosis of Diabetes Using Voltage Analysis Based on EIS (Electro Interstitial Scan) (EIS 기반 전압신호 분석을 통한 당뇨병 진단 가능성 평가)

  • Bae, Jang-Han;Kim, Soochan;Kaewkannate, Kanitthika;Jun, Min-Ho;Kim, Jaeuk U.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.114-122
    • /
    • 2016
  • EIS (Electro interstitial scan) is a non-invasive and simple method to find the physio-pathological information inferred by electric current response with respect to low direct current applied between remote sites of the body. Although a few EIS-based devices for diagnosing diabetes were commercialized, they were not successful in offering clinical validity nor in confirming diagnostic principle. In this study, we measured the voltage responses of diabetic patients and normal subjects with a commercialized EIS device to test the usefulness of EIS in screening diabetes. For this purpose, voltage was measured between pairs of electrodes contacted at both palm, both soles of the feet and left and right forehead above both eyes. After feature extraction of voltage signals, the AUC (area under the curve) between the two groups was calculated and we found that seven variables were appropriately shown above 60% of accuracy. In addition, we applied the k-NN (k-nearest neighbors) method and found that the accuracy of classification between the two groups reached the accuracy of 76.2%. This result implies that the voltage response analysis based on EIS has potential as a diabetics screening method.

Implementation of Constructor-Oriented Visualization System for Occluded Construction via Mobile Augmented-Reality (모바일 증강현실을 이용한 작업자 중심의 폐색된 건축물 시각화 시스템 개발)

  • Kim, Tae-Ho;Kim, Kyung-Ho;Han, Yunsang;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.55-68
    • /
    • 2014
  • Some infrastructure these days is usually constructed under the ground for it to not interfere the foot-traffic of pedestrians, and thus, it is difficult to visually confirm the accurate location of the site where the establishments must be buried. These technical difficulties increase the magnitude of the problems that could arise from over-reliance on the experience of the worker or a mere blueprint. Such problems include exposure to flood and collapse. This paper proposes a constructor-oriented visualization system via mobile gadgets in general construction sites with occluded structures. This proposal is consisted with three stages. First, "Stage of detecting manhole and extracting features" detects and extracts the basis point of occluded structures which is unoccluded manhole. Next, "Stage of tracking features" tracks down the extracted features in the previous stage. Lastly, "Stage of visualizing occluded constructions" analyzes and synthesizes the GPS data and 3D objects obtained from mobile gadgets in the previous stages. This proposal implemented ideal method through parallel analysis of manhole detection, feature extraction, and tracking techniques in indoor environment, and confirmed the possibility through occluded water-pipe augmentation in real environment. Also, it offers a practical constructor-oriented environment derived from the augmented 3D results of occluded water-pipings.

Development of the KOSPI (Korea Composite Stock Price Index) forecast model using neural network and statistical methods) (신경 회로망과 통계적 기법을 이용한 종합주가지수 예측 모형의 개발)

  • Lee, Eun-Jin;Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.95-101
    • /
    • 2008
  • Modeling of stock prices forecast has been considered as one of the most difficult problem to develop accurately since stock prices are highly correlated with various environmental conditions including economics and political situation. In this paper, we propose a agent system approach to predict Korea Composite Stock Price Index (KOSPI) using neural network and statistical methods. To minimize mean of prediction error and variation of prediction error, agent system includes sub-agent modules for feature extraction, variables selection, forecast engine selection, and forecasting results analysis. As a first step to develop agent system for KOSPI forecasting, twelve economic indices are selected from twenty two basic standard economic indices using principal component analysis. From selected twelve economic indices, prediction model input variables are chosen again using best-subsets regression method. Two different types data are tested for KOSPI forecasting and the Prediction results showed 11.92 points of root mean squared error for consecutive thirty days of prediction. Also, it is shown that proposed agent system approach for KOSPI forecast is effective since required types and numbers of prediction variables are time-varying, so adaptable selection of modeling inputs and prediction engine are essential for reliable and accurate forecast model.

Fire Detection Approach using Robust Moving-Region Detection and Effective Texture Features of Fire (강인한 움직임 영역 검출과 화재의 효과적인 텍스처 특징을 이용한 화재 감지 방법)

  • Nguyen, Truc Kim Thi;Kang, Myeongsu;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.6
    • /
    • pp.21-28
    • /
    • 2013
  • This paper proposes an effective fire detection approach that includes the following multiple heterogeneous algorithms: moving region detection using grey level histograms, color segmentation using fuzzy c-means clustering (FCM), feature extraction using a grey level co-occurrence matrix (GLCM), and fire classification using support vector machine (SVM). The proposed approach determines the optimal threshold values based on grey level histograms in order to detect moving regions, and then performs color segmentation in the CIE LAB color space by applying the FCM. These steps help to specify candidate regions of fire. We then extract features of fire using the GLCM and these features are used as inputs of SVM to classify fire or non-fire. We evaluate the proposed approach by comparing it with two state-of-the-art fire detection algorithms in terms of the fire detection rate (or percentages of true positive, PTP) and the false fire detection rate (or percentages of true negative, PTN). Experimental results indicated that the proposed approach outperformed conventional fire detection algorithms by yielding 97.94% for PTP and 4.63% for PTN, respectively.

Improvement of Disparity Map using Loopy Belief Propagation based on Color and Edge (Disparity 보정을 위한 컬러와 윤곽선 기반 루피 신뢰도 전파 기법)

  • Kim, Eun Kyeong;Cho, Hyunhak;Lee, Hansoo;Wibowo, Suryo Adhi;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.502-508
    • /
    • 2015
  • Stereo images have an advantage of calculating depth(distance) values which can not analyze from 2-D images. However, depth information obtained by stereo images has due to following reasons: it can be obtained by computation process; mismatching occurs when stereo matching is processing in occlusion which has an effect on accuracy of calculating depth information. Also, if global method is used for stereo matching, it needs a lot of computation. Therefore, this paper proposes the method obtaining disparity map which can reduce computation time and has higher accuracy than established method. Edge extraction which is image segmentation based on feature is used for improving accuracy and reducing computation time. Color K-Means method which is image segmentation based on color estimates correlation of objects in an image. And it extracts region of interest for applying Loopy Belief Propagation(LBP). For this, disparity map can be compensated by considering correlation of objects in the image. And it can reduce computation time because of calculating region of interest not all pixels. As a result, disparity map has more accurate and the proposed method reduces computation time.

Cavitation signal detection based on time-series signal statistics (시계열 신호 통계량 기반 캐비테이션 신호 탐지)

  • Haesang Yang;Ha-Min Choi;Sock-Kyu Lee;Woojae Seong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.400-405
    • /
    • 2024
  • When cavitation noise occurs in ship propellers, the level of underwater radiated noise abruptly increases, which can be a critical threat factor as it increases the probability of detection, particularly in the case of naval vessels. Therefore, accurately and promptly assessing cavitation signals is crucial for improving the survivability of submarines. Traditionally, techniques for determining cavitation occurrence have mainly relied on assessing acoustic/vibration levels measured by sensors above a certain threshold, or using the Detection of Envelop Modulation On Noise (DEMON) method. However, technologies related to this rely on a physical understanding of cavitation phenomena and subjective criteria based on user experience, involving multiple procedures, thus necessitating the development of techniques for early automatic recognition of cavitation signals. In this paper, we propose an algorithm that automatically detects cavitation occurrence based on simple statistical features reflecting cavitation characteristics extracted from acoustic signals measured by sensors attached to the hull. The performance of the proposed technique is evaluated depending on the number of sensors and model test conditions. It was confirmed that by sufficiently training the characteristics of cavitation reflected in signals measured by a single sensor, the occurrence of cavitation signals can be determined.

Grading meat quality of Hanwoo based on SFTA and AdaBoost (SFTA와 AdaBoost 기반 한우의 육질 등급 분석)

  • Cho, Hyunhak;Kim, Eun Kyeong;Jang, Eunseok;Kim, Kwang Baek;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.433-438
    • /
    • 2016
  • This paper proposes a grade prediction method to measure meat quality in Hanwoo (Korean Native Cattle) using classification and feature extraction algorithms. The applied classification algorithm is an AdaBoost and the texture features of the given ultrasound images are extracted using SFTA. In this paper, as an initial phase, we selected ultrasound images of Hanwoo for verifying experimental results; however, we ultimately aimed to develop a diagnostic decision support system for human body scan using ultrasound images. The advantages of using ultrasound images of Hanwoo are: accurate grade prediction without butchery, optimizing shipping and feeding schedule and economic benefits. Researches on grade prediction using biometric data such as ultrasound images have been studied in countries like USA, Japan, and Korea. Studies have been based on accurate prediction method of different images obtained from different machines. However, the prediction accuracy is low. Therefore, we proposed a prediction method of meat quality. From the experimental results compared with that of the real grades, the experimental results demonstrated that the proposed method is superior to the other methods.

A Study on AR Algorithm Modeling for Indoor Furniture Interior Arrangement Using CNN

  • Ko, Jeong-Beom;Kim, Joon-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.11-17
    • /
    • 2022
  • In this paper, a model that can increase the efficiency of work in arranging interior furniture by applying augmented reality technology was studied. In the existing system to which augmented reality is currently applied, there is a problem in that information is limitedly provided depending on the size and nature of the company's product when outputting the image of furniture. To solve this problem, this paper presents an AR labeling algorithm. The AR labeling algorithm extracts feature points from the captured images and builds a database including indoor location information. A method of detecting and learning the location data of furniture in an indoor space was adopted using the CNN technique. Through the learned result, it is confirmed that the error between the indoor location and the location shown by learning can be significantly reduced. In addition, a study was conducted to allow users to easily place desired furniture through augmented reality by receiving detailed information about furniture along with accurate image extraction of furniture. As a result of the study, the accuracy and loss rate of the model were found to be 99% and 0.026, indicating the significance of this study by securing reliability. The results of this study are expected to satisfy consumers' satisfaction and purchase desires by accurately arranging desired furniture indoors through the design and implementation of AR labels.