• Title/Summary/Keyword: extractable fraction

Search Result 45, Processing Time 0.023 seconds

Increased Available Phosphate by Shell Meal Fertilizer Application in Upland Soil (밭 토양에서 패화석비료 시용에 따른 유효인산의 증대)

  • Lee, Chang-Hoon;Lee, Ju-Young;Ha, Byung-Hyun;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.52-57
    • /
    • 2005
  • Previous studies showed that shell meal fertilizer from the oyster farming industry could be a potential inorganic soil amendment to increase Chinese cabbage productivity and to restore the soil nutrient balance in upland soil (Lee et al., 2004). Herein, shell meal fertilizer was applied at rates of 0, 4, 8, 12, and $16Mg\;ha^{-1}$ to upland soil (Pyeontaeg series, Fine silty, Typic Endoaquepts) for Chinese cabbage cultivation. We found available phosphate increased significantly with shell meal fertilizer application, due to high content of phosphate ($1.5g\;P_2O_5\;kg^{-1}$) in the applied shell meal fertilizer. In addition, high pH of shell meal fertilizer contributed to increase available phosphate content by neutralization of acidic soil. Total and residual P contents increased significantly with increasing shell meal fertilizer application, but we could not find any tendency in organic and inorganic P fraction. Of extractable P fraction, water-soluble phosphorus (W-P) and calcium-bound P (Ca-P) contents increased significantly with increasing application level. By contrast, aluminum and iron-bound P (Al-P and Fe-P) decreased slightly with shell meal application. The present experiment indicated that shell meal fertilizer had a positive benefit on increasing available phosphate content in arable soil. And so the increased available phosphate by shell meal fertilizer may decrease phosphate application level and then reduce phosphorus loss in arable soil.

Fractionation of Heavy Metals and Correlation with Their Contents in Rice Plant Grown in Paddy near Smelter Area (제련소 인근 논 토양 중 중금속 형태 분류 및 수도체중 중금속 함량과의 상관성)

  • Kim, Seong-Jo;Baek, Seung-Hwa;Moon, Kwang-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • The contents of heavy metals in soil near the Janghang smelter area were observed to understand present status and relationship between their fraction and the absorption by rice. The soil samples were taken from the eight sites of the paddy fields in 1982 and 1990, and analysis on heavy metals including Cd, Zn, Cu and Pb was performed. The results were as follows: Total contents of heavy metals in the samples of 1990 were higher than those of 1982. The order of increasing ratio was Cu > Zn > Pb > Cd and the variation of Cd content by sequential differente extracting was residual > exchangeable > dilute acid-extractable fractions and its increasing range was from 38 to 71% during nine years. The ratio of immobile heavy metals bound within an oxide or silicate matrix of Fe-Mn oxide bound and residual in surface soil was that Cd, Pb, Cu and Zn were 31.65, 42.22, 76.57 and 79.49%, respectively, and their mobile ratios of exchangeable, dilute acid-extractable and organically bound were more than 20.28%. Those of mobile Cd, Pb, Cu and Zn were 68.35, 55.78, 23.43 and 20.28%, respectively. Correlation between the heavy metal contents in surface soil and those in tissue of rice plant, such as leaf blade, leaf sheath, stem and panicle axis, were significant, but were not significant in subsurface soil. The dilute acid-extractable and organically bound fractions of Cd, Cu, Pb and Zn in surface soil were more significantly correlated with those in tissues of paddy rice.

  • PDF

Stabilization of Heavy Metals in Contaminated Marine Sediment using Bentonite (벤토나이트에 의한 해양오염퇴적물 내 중금속 안정화 특성)

  • Shin, Woo-Seok;Na, Kyu-Ri;Kim, Young-Kee
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.655-661
    • /
    • 2014
  • In this study, stabilization treatment of heavy metals such as Ni, Cu, Pb, and Zn in contaminated marine sediment was achieved using bentonite. Stabilization experiment was accomplished by wet-curing with bentonite for 150 days. From the sequential extraction results of heavy metals, it was observed that the easily extractable fraction (exchangeable, carbonate, and oxides forms) of Ni, Cu, Pb, and Zn in a treated sediment decreased to 8.5%, 5.6%, 19.2%, and 28.2%, respectively, compared with untreated sediment. Moreover, the TCLP(Toxicity Characteristic Leaching Procedure) results evaluating efficiency of extraction reduction of heavy metals showed that extraction of heavy metals reduced drastically to 95.7%, 96.8%, 99.2%, 85.9% for Ni, Cu, Pb, and Zn by stabilization when compared to untreated sediment. From these results, we can confirm that bentonite as a capping material exhibits good stabilization of heavy metals in contaminated marine sediment.

Heavy Metal Contamination in Roadside Sediments within the Watershed of the Hoidong Reservoir in Busan City (부산시 회동저수지 집수분지 내 주요 도로변 퇴적물의 중금속 오염 평가)

  • Youm Seung-Jun;Lee Pyeong-Koo;Yeon Kyu-Hun;Kang Min-Ju
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.247-260
    • /
    • 2005
  • Extractable concentrations (0.1 N & 1.0 N HCI) of heavy metals in roadside sediments are lower than guidelines for soil recommended by Ministry of Environment. Heavy traffic areas (such as No. 7 national road) show high contents of heavy metals, especially, at curved areas, gully pot, crackdown areas on overspeed, pedestrian crossing etc. Fine fractions $(<63\;{\mu}m)$ of roadside sediments have the highest concentrations of heavy metals, but mass loadings of heavy metal are determined by coarse fractions $(>100{\mu}m)$, due to washing out of fine fraction sediment by runoff water. Proper treatment facilities are needed to control the inflow of fine roadside sediments from No. 7 national road and bridge such as Hanmul bridge.

Airborne Suspended Particulates Concentration and Cancer Risk Assessment of Polycyclic organic matter in Seoul (서울시 대기부유분진의 농도와 다환방향족 유기물질에 의한 발암 위해성)

  • Park, Seoung-Eun;Chung, Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.4
    • /
    • pp.247-256
    • /
    • 1992
  • Airborne suspended particulates were collected at Shinchon by a high volume cascade impactor from Sep. 1990 to Aug. 1991. Organic matter was extracted from particulates and fractionated by liquid-liquid extraction and thin layer chromatography. Substances in the PAHs and nitroarenes'subfraction of neutral fraction were determined by capillary gas chromatography. Based on unit risk estimates by multi-stage model of benzo[a]pyrene and the results of exposure estimates, cancer risk was assessed. The annual average concentration of total suspended particulates was 201.77g/$m^3$. The percentage of fine particulates was 57.40. The concentration of total suspended particulates showed seasonal variations and was high in winter and spring. The average concentration of extractable organic matter was 8.12g/$m^3$. In all, 21 PAHs were identified and quantified. The annual concentration of fluoranthene was 2.38ng/$m^3$, and that was the highest value of all PAHs. A carcinogenic compound, benzo[a]pyrene, was at a concentration of 1.84ng/$m^3$. All the 10 nitroarenes were also identified and quantified. The major nitroarene in the Shinchon area was 2,7-dinitrofluorene. The annual concentration of 1-nitropyrene was 1.56ng/$m^3$. Concentrations of PAHs and nitroarenes were high in winter and low in summer. The life time excess risk estimates of benzo[a]pyrene was calculated as 0.96 persons/a million population in this experiment. In the rank of relative potenties, carcinogenic effects of the other PAHs were calculated as 0.004-0.108 persons/a million population.

  • PDF

Comparison and Consideration on Foreign Guidances for Establishing Risk Assessment Method of Total Petroleum Hydrocarbons in Korea (국내 석유계총탄화수소 위해성평가 방법 마련을 위한 국외 지침 비교 및 고찰)

  • Yun, Sung-Mi;Noh, Hoe-Jung;Kim, Ji-In;Yoon, Jeong-Ki;Lim, Ga-Hee;Lee, Hong-gil;Jo, Hun-Je;Kim, In-Ja;Hwang, Ji-Ae;Kim, Hyun-Koo
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.54-72
    • /
    • 2018
  • This study reviewed standard operation procedures for fractionation and analytical methods of total petroleum hydrocarbons (TPH) in north america and european countries to aid proper establishment of risk assessment protocols associated with TPH exposure in Korea. In current, the TPH fraction methods established by Massachusetts Department of Environmental Protection (MassDEP) and Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) are most frequently employed worldwide. Both methods were developed on the basis of direct exposure of TPH from soil, although the method by TPHCWG also took into account the mobility of TPH. Volatile and extractable fractions of petroleum hydrocarbons were analyzed either separately or together. TPH fractionation methods were evaluated based on conservative toxicity values considering the uncertainty of risk assessment in light of current standard protocol for analyzing soil contaminants in Korea, and it was concluded that the method developed by MassDEP is more appropriate.

Dynamics of Heavy Metals in Soil Amended with Oyster Shell Meal (굴 패화석시용에 따른 토양 내 중금속 동태 변화)

  • Lee, Ju-Young;Hong, Chang-Oh;Lee, Chang-Hoon;Lee, Do-Kyoung;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.358-363
    • /
    • 2005
  • A large amount of oyster-shell waste has been illegally disposed at oyster farm sites along the southern coast of Korea, which already created serious environmental problems. Therefore, the study was undertaken to increase the consumption of oyster shell meal as a soil amendment. The effects of oyster shell meal on dynamics of heavy metals and uptake of heavy metals by spring Chinese cabbage were evaluated in silt loam soil (in Gyeongsang National University, Jinju, Gyeongnam-do, Korea), where 0, 4, 8, 12 and 16 Mg $ha^{-1}$ oyster-shell meal fertilizer were added. Lime treatment (2 Mg $ha^{-1}$) was selected as a control. In the results of this study, cabbage yields were increased by increasing levels of oyster-shell meal fertilizer. With increasing levels of oyster-shell meal fertilizer, total heavy metals concentrations were not significant among treatments. However, 0.1N HCl extractable heavy metals concentration was significantly reduced due to increasing of soil pH. A lot of portion (ca. $80{\sim}90%$) heavy metals fraction of all fractions was residual phase in soil after harvesting. The contents of Cu, Mo, Zn in cabbage were slightly increased by increasing levels of oyster shell meal fertilizer. However, there were no toxic symptoms of heavy metals during cultivation. Conclusively, it was estimated that oyster shell fertilizer could be a good amendment to increase productivity of crop and reduce uptake of heavy metals by crop and mobility of heavy metals in soil.

Arsenic Movement in the Soils around a Closed Zinc Mine (폐 아연 광산 주변 토양에서 비소의 이동양상)

  • Seo, Young-Jin;Choi, Jyung;Kang, Yun-Ju;Park, Man;Kim, Kwang-Seop;Lee, Young-Han;Komarneni, Sridhar
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • The sediments and soils around a mine are likely to be exposed to contamination of arsenic (As) through mining operations. In this study, the factors associated with As movement in soils around a closed zinc (Zn) mine were evaluated by the relationship of As distributions to physico-chemical properties of soils. A sequential extraction scheme, based on a soil P fractionation, was used to assess the As distributionsin solid phases. A significant difference in As distributions was found between paddy and upland soils. While As contents of paddy soils increased with soil depth, those of upland soils decreased with soil depth. In upland soils, As showed additional significant relationships to oxides of Si, Al and Fe. Although a major fraction of As in soils was found to be in the NaOH extractable fraction, As exhibited highly significant relationship to the Zn species that apparently originated from the mine. Therefore, As mobility around Zn mine seems to be governed by mass flow of the particulates containing As-associated Zn in paddy soils, whereas retention reactions such as adsorption, complexation, and precipitation seem to predominate in upland soils.

Liming Effect on Cadmium Immobilization and Phytoavailability in Paddy Soil Affected by Mining Activity (중금속 오염 논토양에서 카드뮴의 부동화와 식물이용성에 대한 석회 시용 효과)

  • Hong, Chang Oh;Kim, Yong Gyun;Lee, Sang Mong;Park, Hyean Cheal;Kim, Keun Ki;Son, Hong Joo;Cho, Jae Hwan;Kim, Pil Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • BACKGROUND: Many studies associated with cadmium (Cd) immobilization using lime fertilizer have been conducted for several decades. However, these studies did not suggest exact mechanism of Cd immobilization using lime fertilizer and evaluated effect of lime fertilizer on Cd phytoavailability in rice paddy soil under field condition. METHODS AND RESULTS: This study was conducted to determine exact mechanism of Cd immobilization using lime fertilizer and evaluate liming effect on Cd uptake of rice in contaminated paddy soil. $Ca(OH)_2$ was mixed with Cd contaminated arable soil at rates corresponding to 0, 1,000, 2,000, 4,000, and 8,000 mg/kg. The limed soil was moistened to paddy soil condition, and incubated at $25^{\circ}C$ for 4 weeks. $NH_4OAc$ extractable Cd concentration in soil decreased significantly with increasing $Ca(OH)_2$ rate, since $Ca(OH)_2$ markedly increased net negative charge of soil by pH increase, and decreased bioavailable Cd fractions (F1; exchangeable + acidic and reducible Cd fraction). Calculated solubility diagram indicated that Cd solubility was controlled by soil-Cd. $NH_4OAc$ extractable Cd and F1 concentration were negatively related to soil pH and negative charge. $Ca(OH)_2$ was applied at rates 0, 2, 4, and 8 Mg/ha and then cultivated rice in the paddy soil under field condition. Cadmium concentrations in grain, straw, and root of rice plant decreased significantly with increasing application rate of $Ca(OH)_2$. CONCLUSION(S): Alleviation of Cd phytoavailability with $Ca(OH)_2$ can be attributed primarily to Cd immobilization due to the increase in soil pH and negative charge rather than precipitation of $Cd(OH)_2$ or $CdCO_3$, and therefore, $Ca(OH)_2$ is effective for reducing Cd phytoavailability of rice in paddy soil.

Vertical Distribution of Heavy Metals in Paddy Soil Near Abandoned Metal Mines (폐금속광산 주변 논토양 중 중금속의 수직분포 특성)

  • Jung, Goo-Bok;Kim, Won-Il;Park, Kwang-Lai;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.297-302
    • /
    • 2001
  • To compare the relationship between the vertical distribution of heavy metals in paddy soil and soil pH near four abandoned metal mines, 40 paddy surface soils $(0{\sim}15\;cm)$ and 12 soils with soil depths ($0{\sim}20$, $20{\sim}40$, $40{\sim}60$, $60{\sim}80$ and $80{\sim}100$ cm) were collected. Both total and extractable heavy metal contents in soils were analyzed after acid digestion $(HNO_3:HClO_4:H_2SO_4)$ and 0.1 N-HCl extraction, respectively. The 0.1 N-HCl fraction ratio over total contents of Cd, Cu, Pb, and Zn were 57, 30, 23, and 19% respectively. Vertical distribution of heavy metals varied considerably among the different mines. In Choil mine, there was no difference in concentrations of all the metals with soil layers. However, Cu and Pb contents in Gahak mime were high at $0{\sim}20\;cm$ depth, and Zn was high at $0{\sim}40\;cm$ depth. In Sinyemi mine, Cd and Cu contents were high at $0{\sim}40\;cm$ depth. Cd, Cu, and Pb contents in Okcheon mine were high through all soil profiles up to 100 cm soil depth. The 0.1 N-HCl fraction ratio over total contents of heavy metals with soil layers were very high at $0{\sim}20\;cm$ depth. As soil depth increased, fraction ratio of heavy metals decreased at the high soil pH (Gahak, Sinyemi, and Choil mines). However, the ratios of Cd, Cu, and Pb in Okcheon mine, having a relatively lower soil pH than other sites, were relatively similar through all the soil profiles up to 100 cm soil depth. Therefore, it was estimated that the mobility and availability of heavy metals in soils were affected by soil pH.

  • PDF