DOI QR코드

DOI QR Code

Liming Effect on Cadmium Immobilization and Phytoavailability in Paddy Soil Affected by Mining Activity

중금속 오염 논토양에서 카드뮴의 부동화와 식물이용성에 대한 석회 시용 효과

  • Hong, Chang Oh (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Kim, Yong Gyun (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Lee, Sang Mong (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Park, Hyean Cheal (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Kim, Keun Ki (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Son, Hong Joo (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Cho, Jae Hwan (Department of Agricultural Economics, Pusan National University) ;
  • Kim, Pil Joo (Institute of Agriculture and Life Sciences, Gyeongsang National University)
  • 홍창오 (부산대학교 생명환경화학과) ;
  • 김용균 (부산대학교 생명환경화학과) ;
  • 이상몽 (부산대학교 생명환경화학과) ;
  • 박현철 (부산대학교 생명환경화학과) ;
  • 김근기 (부산대학교 생명환경화학과) ;
  • 손홍주 (부산대학교 생명환경화학과) ;
  • 조재환 (부산대학교 농업경제학과) ;
  • 김필주 (경상대학교 농업생명과학원)
  • Received : 2013.01.09
  • Accepted : 2013.03.03
  • Published : 2013.03.31

Abstract

BACKGROUND: Many studies associated with cadmium (Cd) immobilization using lime fertilizer have been conducted for several decades. However, these studies did not suggest exact mechanism of Cd immobilization using lime fertilizer and evaluated effect of lime fertilizer on Cd phytoavailability in rice paddy soil under field condition. METHODS AND RESULTS: This study was conducted to determine exact mechanism of Cd immobilization using lime fertilizer and evaluate liming effect on Cd uptake of rice in contaminated paddy soil. $Ca(OH)_2$ was mixed with Cd contaminated arable soil at rates corresponding to 0, 1,000, 2,000, 4,000, and 8,000 mg/kg. The limed soil was moistened to paddy soil condition, and incubated at $25^{\circ}C$ for 4 weeks. $NH_4OAc$ extractable Cd concentration in soil decreased significantly with increasing $Ca(OH)_2$ rate, since $Ca(OH)_2$ markedly increased net negative charge of soil by pH increase, and decreased bioavailable Cd fractions (F1; exchangeable + acidic and reducible Cd fraction). Calculated solubility diagram indicated that Cd solubility was controlled by soil-Cd. $NH_4OAc$ extractable Cd and F1 concentration were negatively related to soil pH and negative charge. $Ca(OH)_2$ was applied at rates 0, 2, 4, and 8 Mg/ha and then cultivated rice in the paddy soil under field condition. Cadmium concentrations in grain, straw, and root of rice plant decreased significantly with increasing application rate of $Ca(OH)_2$. CONCLUSION(S): Alleviation of Cd phytoavailability with $Ca(OH)_2$ can be attributed primarily to Cd immobilization due to the increase in soil pH and negative charge rather than precipitation of $Cd(OH)_2$ or $CdCO_3$, and therefore, $Ca(OH)_2$ is effective for reducing Cd phytoavailability of rice in paddy soil.

석회시용에 의한 카드뮴의 부동화와 식물이용성 저감효과를 구명하기 위해 우리나라의 대표적인 석회비료인 소석회를 선정하여 소석회에 의한 논토양 내 카드뮴의 부동화 기작과 벼의 카드뮴 흡수특성을 조사하였다. 소석회는 토양의 pH와 음하전도를 증대시켜 카드뮴의 흡착을 증대시키는 것으로 조사되었다. 소석회의 처리량을 증가시킴에 따라 식물이 이용하기 쉬운 형태인 유효태 카드뮴과 치환성 및 carbonate 결합태 카드뮴의 함량이 유의적으로 감소하였다. 소석회를 8,000 mg/kg 과량으로 시용하였을 때 $CdCO_3$ 형태로의 침전이 가능하였을 것으로 판단되나 8,000 mg/kg 이하로 처리하였을 때 $CdCO_3$$Cd(OH)_2$ 형태로의 침전은 없었던 것으로 조사되었다. 또한 토양의 pH와 음하전도는 유효태 카드뮴과 치환성 및 carbonate 결합태 카드뮴의 함량과 유의한 부의 상관관계를 나타내었다. 따라서 소석회에 의한 토양 내 카드뮴의 부동화는 $CdCO_3$$Cd(OH)_2$ 형태로의 침전형성에 의한 것이 아니라 pH와 음하전도의 증대에 기인된 카드뮴 이온의 흡착에 의한 것으로 판단되어 졌다. 논토양의 현장조건에서 소석회의 시용에 의한 벼의 카드뮴 흡수농도 저감효과를 시험한 결과, 소석회의 시용량을 증가시킴에 따라 벼의 카드뮴 흡수농도는 유의적으로 감소하는 결과를 나타내었다.

Keywords

References

  1. Adriano, D.C., 2001. Trace elements in terrestrial environments; biogeochemistry, bioavailability and risks of metals, p. 866, second ed. Springer, New York.
  2. Allison, L.E., 1965. Organic carbon, in: Black C.A. (Eds), Methods of Soil Analysis. Part II. Am. Soc. Agron. Inc. Publ., Madison, WI, pp. 1367-1376.
  3. Andersson, A., Siman, G., 1991. Levels of Cd and some other trace elements in soils and crops as influenced by lime and fertilizer level, Acta Agric. Scand. 41, 3-11. https://doi.org/10.1080/00015129109438579
  4. Ariza, J.L., Giraldez., G.I., Sanchez-Rodas, D., Morale, E., 2000. Comparison of the feasibility of three extraction procedures for trace metal partitioning in sediments from south-west Spain, Sci. Total Environ. 246, 271-283. https://doi.org/10.1016/S0048-9697(99)00468-4
  5. Barrow, N.J., 1985. Reactions of anions and cations with variable charge soils, Adv. Agron. 38, 183-230.
  6. Basta, N.T., Sloan, J.J., 1999. Bioavailability of heavy metals in strongly acidic soils treated with exceptional quality biosolids, J. Environ. Qual. 28, 633-638.
  7. Bingham, F.T., 1979. Bioavailability of Cd to food crops in relation to heavy metal contents of sludge-amended soil, Environ Health Perspect 28, 39-43. https://doi.org/10.1289/ehp.792839
  8. Bolan, N.S., Adriano, D.C., Mani, P.A., Duraisamy, A., 2003. Immobilization and phytoavailability of cadmiumin variable charge soils. II. Effect of lime addition, Plant and Soil 251, 187-198. https://doi.org/10.1023/A:1023037706905
  9. Brallier, S., Harrison, R.B., Henry, C.L., Dongsen, X., 1996. Liming effects on availability of Cd, Cu, Ni and Zn in a soil amended with sewage sludge 16 years previously, Water Air Soil Pollut. 86, 195-206. https://doi.org/10.1007/BF00279156
  10. Bremner, J.M., 1965. Total nitrogen, in: Black C.A. (Eds), Methods of Soil Analysis. Part II. Am. Soc. Agron. Inc. Publ., Madison, WI, pp. 1149-1178.
  11. Brun, L.A., Maillet, J., Hinsinger, P., Pepin, M., 2001. Evaluation of copper availability to plants in coppercontaminated vineyard soils, Environ. Pollut. 111, 293-302. https://doi.org/10.1016/S0269-7491(00)00067-1
  12. Curtin, D., Campbell, C.A., Messer, D., 1996. Prediction of titratable acidity and soil sensitivity to pH change, J. Environ. Qual. 25, 1280-1284.
  13. Fernandes, M. L., Abreu, M.M., Calouro, F., Vaz, M.C., 1999. Effect of liming and cadmium application in an acid soil on cadmium availability to Sudan grass, Commun. Soil Sci. Plant Anal. 30, 1051-1062. https://doi.org/10.1080/00103629909370267
  14. Gommy, C., Perdrix, E., Galloo, J.-C., Guillermo, R., 1998. Metal speciation in soil: extraction of exchangeable cations from a calcareous soil with a magnesium nitrate solution, Int. J. Environ. Anal. Chem. 72, 27-45. https://doi.org/10.1080/03067319808032642
  15. Gray, C.W., McLaren, R.G., Roberts, A.H.C., Condron, L.M., 1999. Effect of soil pH on cadmium phytoavailability in some New Zealand soils, N. Z. J. Crop Hort. 27, 169-179. https://doi.org/10.1080/01140671.1999.9514093
  16. Hetherington, L.E., Brown. T.J., Benham, A.J., Lusty, P.A.J., Idoine, N.E., 2007. World mineral production, 2001-2005. NERC, p. 13.
  17. Hong, C.O., Lee, D.K., Chung, D.Y., Kim, P.J., 2007. Liming effects on cadmium stabilization in upland soil affected by gold mining activity, Environ. Contam. Toxicol. 52, 496-502. https://doi.org/10.1007/s00244-006-0097-0
  18. Hong, C.O., Lee, D.K., Kim, P.J., 2008. Feasibility of Phosphate Fertilizer to immobilize Cadmium in a Field, Chemosphere 70, 2009-2015. https://doi.org/10.1016/j.chemosphere.2007.09.025
  19. John, M.K., VanLaerhoven, C.J., Chuah, H.H., 1972. Factors affecting plant uptake and phytotoxicity of cadmium added to soils, Environ. Sci. Technol. 6, 1005-1009. https://doi.org/10.1021/es60071a008
  20. Jung, G.B., Lee, J.S., Kim, W.I., Kim, B.Y., 1999. The effect of irrigation control and the application of soil ameliorators on cadmium uptake in paddy rice, Korean J. Environ. Agric. 18, 355-360.
  21. Kaasalainen, M., Yli-Halla, M., 2003. Use of sequential extraction to assess metal partitioning in soils, Environmental Pollution 126, 225-233. https://doi.org/10.1016/S0269-7491(03)00191-X
  22. Khan, D.H., Frankland, B., 1983. Effects of cadmium and lead on radish plants with particular reference to movement of metals through soil profile and plant, Plant Soil 70, 335-345. https://doi.org/10.1007/BF02374890
  23. Kim, M.G., Kim, W.I., Jeong, G.B., Park, G.L., Yun, S.G., Eom, G.C., 2004. Effects of lime and humic acid on the cadmium availability and its uptake by rice in paddy soils, Korean J. Environ. Agric., 23, 28-33. https://doi.org/10.5338/KJEA.2004.23.1.028
  24. Kreutzer, K., 1995. Effects of forest liming on soil processes, Plant Soil 168, 447-470.
  25. Lee, M.H., Kim, K.S., Kim, B.Y., Han, K.H., 1984. Effect of lime application on growth and Cd uptake of paddy rice, J. Korean Soc. Soil Sci. Fert. 17, 258-264.
  26. Li, Y.M., Chaney, R.L., Schneiter, A.A., Johnson, B.L. 1996. Effect of field limestone applications on cadmium content of sunflower (Helianthus annuus L.) leaves and kernels, Plant Soil 180, 297-302. https://doi.org/10.1007/BF00015313
  27. Lindsay, W.L., 1979. Chemical equilibria in soils. Chapter 19. Cadmium, John wiley & Sons. pp. 316-326.
  28. Maier, N.A., McLaughlin, M.J., Heap, M., Butt, M., Smart, M.K., Williams, C.M.J., 1997. Effect of currentseason application of calcitic lime on soil pH, yield and cadmium concentration in potato (Solanum tuberosum L) tubers, Nutr. Cycl. Agroecosyst. 47, 29-40.
  29. McBride, M.B., 1994. Environmental chemistry of soils. Chapter 9. Trace and toxic elements in soils, Oxford University Press, Inc. pp. 308-341.
  30. Naidu, R., Bolan, N.S., Kookana, R.S., Tiller, K.G., 1994. Ionic strength and pH effects on the adsorption of cadmium and the surface charge of soils, Eur. J. Soil Sci. 45, 419-429. https://doi.org/10.1111/j.1365-2389.1994.tb00527.x
  31. Naidu, R., Kookana, R.S., Sumner, M.E., Harter, R.D., Tiller, K.G., 1997. Cadmium sorption and transport in variable charge soils: a review, J. Environ. Qual. 26, 602-607.
  32. RDA (Rural Development Administration, Korea), 1988. Methods of soil chemical analysis. National Institute of agricultural science and technology, RDA, Suwon (in Korean).
  33. Sparks, D.L., 1996. Methods of soil analysis, in: Sparks D.L. (Eds), Part 3 chemical methods, Soil Science Society of America, American Society of Agronomy, Madison, WI, pp 1146-1155.
  34. Sposito, G., Lund, L.J., Chang, A.C., 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases, Soil Sci. Soc. Am. J. 46, 260-264. https://doi.org/10.2136/sssaj1982.03615995004600020009x
  35. Thomas, G.W., Hargrove, W.L., 1984. The chemistry of soil acidity. in: Adams, F. (Ed), Soil acidity and liming, Agron. Monogr. p. 12, 3-56, American Society of Agronomy, Madison, WI.
  36. United States Salinity Laboratory Staff., 1954. Diagnosis and Improvement of Saline and Alkali Soils. U. S. Dept. Agr. Handbook 60.
  37. Ure, A.M., Quevauviller, P.H., Muntau, H., Griepink, B., 1993. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities, J. Environ. Anal. Chem. 51, 135-151. https://doi.org/10.1080/03067319308027619
  38. Vig, K., Megharaj, M., Sethunathan, N., Naidu, R., 2003. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review, Adv. Environ. Res. 8, 121-135. https://doi.org/10.1016/S1093-0191(02)00135-1
  39. Wang, K.O., 1981. Studies on the alleviation of heavy metal (Cadmium) damage through soil improvement I. Extraction of cadmium and the damage through exchangeable $Cd^{++}$ by the application of soil amendments, J. Korean Soc. Soil Sci. Fert. 14, 242-249.

Cited by

  1. Application of Liriope platyphylla, Ornamental Korean Native Plants, for Contaminated Soils in Urban Areas vol.42, pp.5, 2014, https://doi.org/10.9715/KILA.2014.42.5.081
  2. Characteristics of Heavy Metal Accumulation and Removing from Soil using Korean Native Plant, Liriope platyphylla for Phytoremediation vol.23, pp.1, 2014, https://doi.org/10.5322/JESI.2014.23.1.61
  3. Effect of Phosphate Application on Cadmium Extractability and its Uptake by Rice Cultivated in Contaminated Paddy Soil vol.35, pp.4, 2016, https://doi.org/10.5338/KJEA.2016.35.4.35