• Title/Summary/Keyword: extracellular regulated kinase

Search Result 527, Processing Time 0.026 seconds

The Src/PLC/PKC/MEK/ERK Signaling Pathway Is Involved in Aortic Smooth Muscle Cell Proliferation induced by Glycated LDL

  • Cho, Hyun-Mi;Choi, Sung Hee;Hwang, Ki-Chul;Oh, Sue-Young;Kim, Ho-Gyung;Yoon, Deok-Hyo;Choi, Myung-Ae;Lim, So Yeon;Song, Heesang;Jang, Yangsoo;Kim, Tae Woong
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.60-66
    • /
    • 2005
  • Low density lipoproteins (LDL) play important roles in the pathogenesis of atherosclerosis. Diabetes is associated with accelerated atherosclerosis leading to cardiovascular disease in diabetic patients. Although LDL stimulates the proliferation of arterial smooth muscle cells (SMC), the mechanisms are not fully understood. We examined the effects of native LDL and glycated LDL on the extracellular signal-regulated kinase (ERK) pathway. Addition of native and glycated LDL to rat aorta SMCs (RASMCs) stimulated ERK phosphorylation. ERK phosphorylation was not affected by exposure to the $Ca^{2+}$ chelator BAPTA-AM but inhibition of protein kinase C (PKC) with GF109203X, inhibition of Src kinase with PP1 ($5{\mu}M$) and inhibition of phospholipase C (PLC) with U73122/U73343 ($5{\mu}M$) all reduced ERK phosphorylation in response to glycated LDL. In addition, pretreatment of the RASMCs with a cell-permeable mitogen-activated protein kinase kinase (MEK) inhibitor (PD98059, $5{\mu}M$) markedly decreased ERK phosphorylation in response to native and glycated LDL. These findings indicate that ERK phosphorylation in response to glycated LDL involves the activation of PKC, PLC, and MEK, but is independent of intracellular $Ca^{2+}$.

Calcium-induced Human Keratinocytes(HaCaT) Differentiation Requires Protein Kinase B Activation in Phosphatidylinositol 3-Kinase-dependent Manner

  • Piao, Longzhen;Shin, Sang-Hee;Yang, Keum-Jin;Park, Ji-Soo;Shin, Eul-Soon;Li, Yu-Wen;Park, Kyung-Ah;Byun, Hee-Sun;Won, Min-Ho;Lee, Choong-Jae;Hur, Gang-Min;Seok, Jeong-Ho;Kim, Ju-Duck
    • Toxicological Research
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2006
  • The survival and growth of epithelial cells depends on adhesion to the extracellular matrix. An adhesion signal may regulate the initiation of differentiation, since epidermal keratinocytes differentiate as they leave the basement membrane. A metabolically dead cornified cell envelope is the end point of epidermal differentiation so that this process may be viewed as a specialized form of programmed cell death. In order to investigate the precise cellular signaling events loading to terminal differentiation of keratinocytes, we have utilized HaCaT cells to monitor the biological consequences of $Ca^{2+}$ stimulation and numerous downstream signaling pathways, including activation of the extracellular signal-regulated protein kinase(ERK) pathway and activation of phosphatidylinositol 3-kinase(PI3K). The results presented in this study show that $Ca^{2+}$ function as potent agents for the differentiation of HaCaT keratinocytes, and this differentiation depends or the activation of ERK, Protein kinase B(PKB) and p70 ribosomal protein S6 kinase(p70S6K). Finally, the results show that the expression of Activator protein 1(AP-1; c-Jun and c-Fos) increased following $Ca^{2+}$-mediated differentiation of HaCaT cells, suggesting that ERK-mediated AP-1 expression is critical for initiating the terminal differentiation of keratinocytes.

Role of ghrelin in the pancreatic exocrine secretion via mitogen-activated protein kinase signaling in rats

  • Lee, Kyung-Hoon;Lee, Jae-Sung;Wang, Tao;Oh, Jin-Ju;Roh, Sanggun;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.59 no.7
    • /
    • pp.16.1-16.6
    • /
    • 2017
  • Background: This study was performed to investigate the impact of exogenous ghrelin on the pancreatic ${\alpha}$-amylase outputs and responses of pancreatic proteins to ghrelin that may relate to pancreatic exocrine. Methods: Sprague-Dawley male rats (9 weeks old, $300{\pm}10g$) were injected with ghrelin via intraperitoneal (i.p.) infusion at dosage of 0, 0.1, 1.0 and $10.0{\mu}g/kg$ body weight (BW), respectively. The plasma ghrelin and cholecystokinin (CCK) level were determined using enzyme immunoassay kit; the mRNA expression of ghrelin receptor ($GHSR-1{\alpha}$) and growth hormone (GH) receptor were assessed by reverse transcription PCR; the expressions of pancreatic ${\alpha}$-amylase activity, extracellular-signal-regulated kinases (ERK), phosphorylated extracellular-signal-regulated kinases (pERK) and c-Jun N-terminal kinase (JNK) were evaluated by western blotting; moreover the responses of pancreatic proteins to ghrelin were analyzed using the two-dimensional gel electrophoresis system. Results: The exogenous ghrelin (1.0 and $10.0{\mu}g/kg\;BW$) elevated the level of plasma ghrelin (p < 0.05), and suppressed the expression of pancreatic ${\alpha}$-amylase at a dose of $10.0{\mu}g/kg\;BW$ (p < 0.05). No difference in the level of plasma CCK was observed, even though rats were exposed to any dose of exogenous ghrelin. In addition, a combination of western blot and proteomic analysis revealed exogenous ghrelin ($10.0{\mu}g/kg\;BW$) induced increasing the JNK and ERK expressions (p < 0.05) and four proteins such as Destrin, Anionic trypsin-1, Trypsinogen, and especially eukaryotic translation initiation factor 3 in rat pancreas. Conclusions: Taken together, exogenous ghrelin by i.p. infusion plays a role in the pancreatic exocrine secretion via mitogen-activated protein kinase signaling pathway.

Effects of 4 Weeks Endurance Exercise on Expression of Extracellular Signal-Regulated Kinases and c-Jun N-terminal Kinase in Rat Back Skin Hair Follicle (4주간 지구성 운동이 흰쥐의 Back Skin Hair Follicle에서 ERK 및 JNK의 활성화에 미치는 영향)

  • Kim, Mo-Kyung;Park, Han-Su;Jo, Sung-Cho;Chae, Jeong-Ryong;Kim, Mo-Young;Shin, Byung-Cheul
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1211-1216
    • /
    • 2006
  • The effect of a chronic programme of either low- or moderate-to-high-intensity treadmill running on the activation of the Extracellular-signal regulated protein kinase (ERK1/2), Phosphorylated ERK 1/2(pERK1/2) and the Phosphorylated c-Jun N-terminal kinase(pJNK) pathways was determined in rat Back skin Hair follicle. Sprague-Dawley rats were assigned to one of three groups: (i) sedentary group(NE; n=10); (ii) low-intensity exercise group (Bm/min; LIE; n=10); and (iii) moderate-high-intensity exercise group(28m1min; HIE; n=10). The training regimens were planned so that animals covered the same distance and had similar utilization for both LIE and HIE exercise sessions. The report runs as follows; A single bout of LIE or HIE following 4 weeks of exercise led to a twofold increase in the phosphorylation of ERK2, pERK2 and a threefold increase in pJNKl, pERKl. ERKI phosphorylation in LIE Back skin sampled and pJNK2 in HIE Back skin sampled 48h after the last exercise bout was similar to sedentary values, while pJNK2 phosphorylation in LIE Back skin sampled was 70-80% lower than sedentary. 48h after the last exercise bout of LIE or HIE increased ERK2, pERKl and pJNKl expression, with the magnitude of this increase being independent of prior exercise intensity or duration. PERK1/2, pJNKl expression was increased Three- to fourfold in Back skin Hair follicle sampled 48h after the last exercise bout irrespective of the prior exercise programme, but ERKI expression in HIE Back skin sampled was approximately 90% lower than sedentary values. In conclusion, exercise-training of different jntensities/durations results in selective postexercise activation of intracellular signal pathways, which may be one mechanism regulating specific adaptations induced by diverse training programmes.

Inhibitory Effects of Novel Hexapeptide on Melanogenesis by Regulating MITF in B16F10 Melanoma Cells (B16F10 멜라닌 세포에서 신규 헥사펩타이드의 MITF 조절을 통한 멜라닌 생성 저해 효과)

  • Lee, Eung Ji;Kim, Jandi;Jeong, Min Kyeong;Lee, Young Min;Chung, Yong Ji;Kim, Eun Mi
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.11-22
    • /
    • 2020
  • In this study, we investigated anti-pigmentation effect of a hexapeptide. The peptide significantly reduced melanin contents and inhibited tyrosinase activity in a dose-dependent manner, in which tyrosinase is a key enzyme in melanogenesis. The peptide also significantly reduced the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1) and their upstream transcription factor, microphthalmia-associated transcription factor (MITF). Furthermore, the peptide suppressed the phosphorylation level of cAMP-response element binding protein (CREB), a transcription factor of MITF, and increased the phosphorylation level of extracellular signal-regulated kinase (ERK), a kinase mediates MITF phosphorylation and proteasomal degradation. The peptide significantly inhibited the expression of Rab27A, Melanophilin, and MyosinVa, the components of motor complex involved in intracellular movement of melanosome. These results suggest that Hexapeptide could be used as an effective whitening agent that has inhibitory effect on melanin production and melanosome transport by regulating expression and degradation of MITF in melanocytes.

The Activity of Hypertension-related Protein Kinase C and the Relationship of Physical Therapy (고혈압-연관 단백질 부활효소 C의 활성과 물리치료의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.3
    • /
    • pp.61-68
    • /
    • 2008
  • Purpose: Protein kinase C (PKC) is a member of a family of serine/threonine kinases that are activated by diacylglycerol (DG) and PKC stimulants. PKC play a key role in signal transduction, including muscle contraction, cell migration, apoptosis, cell proliferation and differentiation. However, the mechanism relating mitogen-activated protein kinases (MAPKs) and PKC, especially in the volume-dependent hypertensive state, remains unclear. Methods: In the present study, I investigated the relationship between PKC and MAPKs for isometric contraction, PKC translocation, and enzymatic activity from normotensive sham-operated rats (NSR) and aldosterone-analogue deoxycorticosterone acetate (DOCA) hypertensive rats (ADHR). Results: Systolic blood pressure was significantly increased in ADHR than in NSR. Physiological salt solution (PSS)-induced resting tension and the intracellular $Ca^{2+}$ concentration ([$Ca^{2+}{_i}$]) were different in the ADHR and NSR. The expression of PKC$\alpha$, PKC$\beta$II, PKC$\delta$, PKC$\varepsilon$ and PKC$\xi$ were different between the cytoplasmic and membranous fractions. However, expression of the PKC isoforms did not differ for the ADHR and NSR. The use of 12-deoxyphorbol 13-isobutyrate (DPB, a PKC stimulant) induced isometric contraction in $Ca^{2+}$-free medium, which was diminished in muscle strips from ADHR as compared to NSR. Increased vasoconstriction and phosphorylation induced by the use of 1 ${\mu}$M DPB were inhibited by treatment with 10 ${\mu}$M PD098059 and 10 ${\mu}$M SB203580, inhibitors of extracellular-regulated protein kinase 1/2 (ERK1/2) and p38 MAPK from ADHR, respectively. Conclusion: These results suggest that the development of aldosterone analogue-induced hypertension is associated with an altered blood pressure, resting tension, [$Ca^{2+}{_i}$], and that the $Ca^{2+}$-independent contraction evoked by PKC stimulants is due to the activation of ERK1/2 and p38 MAPK in volume-dependent hypertension. Therefore, it is suggested that PKC activity affects volume-dependent hypertension and the need to develop cardiovascular disease-specialized physical therapy.

  • PDF

Phorbol 12-Myristate 13-Acetate Enhances Long-Term Potentiation in the Hippocampus through Activation of Protein Kinase $C{\delta}$ and ${\varepsilon}$

  • Kim, Eung Chang;Lee, Myeong Jong;Shin, Sang Yep;Seol, Geun Hee;Han, Seung Ho;Yee, Jaeyong;Kim, Chan;Min, Sun Seek
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • Many intracellular proteins and signaling cascades contribute to the sensitivity of N-methyl-D-aspartate receptors (NMDARs). One such putative contributor is the serine/threonine kinase, protein kinase C (PKC). Activation of PKC by phorbol 12-myristate 13-acetate (PMA) causes activation of extracellular signal-regulated kinase (ERK) and promotes the formation of new spines in cultured hippocampal neurons. The purpose of this study was to examine which PKC isoforms are responsible for the PMA-induced augmentation of long-term potentiation (LTP) in the CA1 stratum radiatum of the hippocampus in vitro and verify that this facilitation requires NMDAR activation. We found that PMA enhanced the induction of LTP by a single episode of theta-burst stimulation in a concentration-dependent manner without affecting to magnitude of baseline field excitatory postsynaptic potentials. Facilitation of LTP by PMA (200 nM) was blocked by the nonspecific PKC inhibitor, Ro 31-8220 ($10{\mu}M$); the selective $PKC{\delta}$ inhibitor, rottlerin ($1{\mu}M$); and the $PKC{\varepsilon}$ inhibitor, TAT-${\varepsilon}V1$-2 peptide (500 nM). Moreover, the NMDAR blocker DL-APV ($50{\mu}M$) prevented enhancement of LTP by PMA. Our results suggest that PMA contributes to synaptic plasticity in the nervous system via activation of $PKC{\delta}$ and/or $PKC{\varepsilon}$, and confirm that NMDAR activity is required for this effect.

Curcumin Stimulates Proliferation of Spinal Cord Neural Progenitor Cells via a Mitogen-Activated Protein Kinase Signaling Pathway

  • Son, Sihoon;Kim, Kyoung-Tae;Cho, Dae-Chul;Kim, Hye-Jeong;Sung, Joo-Kyung;Bae, Jae-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • Objective : The aims of our study are to evaluate the effect of curcumin on spinal cord neural progenitor cell (SC-NPC) proliferation and to clarify the mechanisms of mitogen-activated protein (MAP) kinase signaling pathways in SC-NPCs. Methods : We established cultures of SC-NPCs, extracted from the spinal cord of Sprague-Dawley rats weighing 250 g to 350 g. We measured proliferation rates of SC-NPCs after curcumin treatment at different dosage. The immuno-blotting method was used to evaluate the MAP kinase signaling protein that contains extracellular signal-regulated kinases (ERKs), p38, c-Jun $NH_2$-terminal kinases (JNKs) and ${\beta}$-actin as the control group. Results : Curcumin has a biphasic effect on SC-NPC proliferation. Lower dosage (0.1, 0.5, $1{\mu}M$) of curcumin increased SC-NPC proliferation. However, higher dosage decreased SC-NPC proliferation. Also, curcumin stimulates proliferation of SC-NPCs via the MAP kinase signaling pathway, especially involving the p-ERK and p-38 protein. The p-ERK protein and p38 protein levels varied depending on curcumin dosage (0.5 and $1{\mu}M$, p<0.05). Conclusion : Curcumin can stimulate proliferation of SC-NPCs via ERKs and the p38 signaling pathway in low concentrations.

Britanin Suppresses IgE/Ag-Induced Mast Cell Activation by Inhibiting the Syk Pathway

  • Lu, Yue;Li, Xian;Park, Young Na;Kwon, Okyun;Piao, Donggen;Chang, Young-Chae;Kim, Cheorl-Ho;Lee, Eunkyung;Son, Jong Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.193-199
    • /
    • 2014
  • The aim of this study was to determine whether britanin, isolated from the flowers of Inula japonica (Inulae Flos), modulates the generation of allergic inflammatory mediators in activated mast cells. To understand the biological activity of britanin, the authors investigated its effects on the generation of prostaglandin $D_2$ ($PGD_2$), leukotriene $C_4$ ($LTC_4$), and degranulation in IgE/Ag-induced bone marrow-derived mast cells (BMMCs). Britanin dose dependently inhibited degranulation and the generations of $PGD_2$ and $LTC_4$ in BMMCs. Biochemical analyses of IgE/Ag-mediated signaling pathways demonstrated that britanin suppressed the phosphorylation of Syk kinase and multiple downstream signaling processes, including phospholipase $C{\gamma}1$ ($PLC{\gamma}1$)-mediated calcium influx, the activation of mitogen-activated protein kinases (MAPKs; extracellular signal-regulated kinase 1/2, c-Jun $NH_2$-terminal kinase and p38), and the nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) pathway. Taken together, the findings of this study suggest britanin suppresses degranulation and eicosanoid generation by inhibiting the Syk-dependent pathway and britanin might be useful for the treatment of allergic inflammatory diseases.

Antineuroinflammatory Effects of 7,3',4'-Trihydroxyisoflavone in Lipopolysaccharide-Stimulated BV2 Microglial Cells through MAPK and NF-κB Signaling Suppression

  • Kim, Seon-Kyung;Ko, Yong-Hyun;Lee, Youyoung;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.127-134
    • /
    • 2021
  • Neuroinflammation―a common pathological feature of neurodegenerative disorders such as Alzheimer's disease―is mediated by microglial activation. Thus, inhibiting microglial activation is vital for treating various neurological disorders. 7,3',4'-Trihydroxyisoflavone (THIF)―a secondary metabolite of the soybean compound daidzein―possesses antioxidant and anticancer properties. However, the effects of 7,3',4'-THIF on microglial activation have not been explored. In this study, antineuroinflammatory effects of 7,3',4'-THIF in lipopolysaccharide (LPS)-stimulated BV2 microglial cells were examined. 7,3',4'-THIF significantly suppressed the production of the proinflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) as well as of the proinflammatory cytokine interleukin-6 (IL-6) in LPS-stimulated BV2 microglial cells. Moreover, 7,3',4'-THIF markedly inhibited reactive oxygen species (ROS) generation. Western blotting revealed that 7,3',4'-THIF diminished LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), glycogen synthase kinase-3β (GSK-3β), and nuclear factor kappa B (NF-κB). Overall, 7,3',4'-THIF exerts antineuroinflammatory effects against LPS-induced microglial activation by suppressing mitogen-activated protein kinase (MAPK) and NF-κB signaling, ultimately reducing proinflammatory responses. Therefore, these antineuroinflammatory effects of 7,3',4'-THIF suggest its potential as a therapeutic agent for neurodegenerative disorders.