DOI QR코드

DOI QR Code

Inhibitory Effects of Novel Hexapeptide on Melanogenesis by Regulating MITF in B16F10 Melanoma Cells

B16F10 멜라닌 세포에서 신규 헥사펩타이드의 MITF 조절을 통한 멜라닌 생성 저해 효과

  • Lee, Eung Ji (Department of Chemistry and Cosmetics, Jeju National University) ;
  • Kim, Jandi (Department of Chemistry and Cosmetics, Jeju National University) ;
  • Jeong, Min Kyeong (Department of Chemistry and Cosmetics, Jeju National University) ;
  • Lee, Young Min (Department of Chemistry and Cosmetics, Jeju National University) ;
  • Chung, Yong Ji (Department of Chemistry and Cosmetics, Jeju National University) ;
  • Kim, Eun Mi (Department of Chemistry and Cosmetics, Jeju National University)
  • Received : 2019.12.05
  • Accepted : 2020.03.18
  • Published : 2020.03.30

Abstract

In this study, we investigated anti-pigmentation effect of a hexapeptide. The peptide significantly reduced melanin contents and inhibited tyrosinase activity in a dose-dependent manner, in which tyrosinase is a key enzyme in melanogenesis. The peptide also significantly reduced the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1) and their upstream transcription factor, microphthalmia-associated transcription factor (MITF). Furthermore, the peptide suppressed the phosphorylation level of cAMP-response element binding protein (CREB), a transcription factor of MITF, and increased the phosphorylation level of extracellular signal-regulated kinase (ERK), a kinase mediates MITF phosphorylation and proteasomal degradation. The peptide significantly inhibited the expression of Rab27A, Melanophilin, and MyosinVa, the components of motor complex involved in intracellular movement of melanosome. These results suggest that Hexapeptide could be used as an effective whitening agent that has inhibitory effect on melanin production and melanosome transport by regulating expression and degradation of MITF in melanocytes.

본 연구에서는 6 개의 아미노산으로 이루어진 헥사펩타이드(hexapeptide)의 미백 효능에 대해 수행하였다. 실험 결과 헥사펩타이드 처리에 의해 유의한 수준의 멜라닌 생성 저해가 관찰 되었고, 멜라닌 생성 과정에 관여하는 주요 효소인 tyrosinase의 활성이 농도 의존적으로 억제됨이 관찰 되었다. 멜라닌 생성 관련 인자들의 발현을 관찰 한 결과 tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1) 및 이들의 상위 전사인자인 microphthalmia-associated transcription factor (MITF)의 발현이 헥사펩타이드 처리에 의해 유의한 수준으로 저해 되었다. 또한 헥사펩타이드 처리에 의해 MITF 발현을 조절하는 상위 전사인자인 cAMP-response element binding protein (CREB)의 인산화가 저해 되었고 MITF 인산화를 통해 프로테아좀 분해(proteasomal degradation)를 유도하는 extracellular signal-regulated kinase (ERK) 인산화가 증가 되었다. 이외에도, 멜라노좀의 세포 내 이동에 관여하는 복합체의 구성 인자들로 알려진 Rab27A, melanophilin, myosinVa의 발현도 헥사펩타이드에 의해 유의한 수준으로 저해 되었다. 이 결과를 통해, 본 연구의 헥사펩타이드는 멜라닌세포의 멜라닌 생성 관련 핵심 전사인자인 MITF의 발현 및 분해 조절을 통해 멜라닌 생성 억제 및 멜라노좀 이동과 같은 전반적인 멜라노좀 성숙 과정에 저해 효과를 나타내는 것으로 보인다. 헥사펩타이드의 이러한 미백 효능은 신규 미백 기능성 화장품 소재로 응용될 수 있을 것으로 기대된다.

Keywords

References

  1. T. Hirobe, Keratinocytes regulate the function of melanocytes, Dermatologica Sinica, 32(4), 200 (2014). https://doi.org/10.1016/j.dsi.2014.05.002
  2. A. Hachiya, A. Kobayashi, A. Ohuchi, Y. Takema, and G. Imokawa, The paracrine role of stem cell factor/c-kit signaling in the activation of human melanocytes in ultraviolet-B-induced pigmentation, J. Invest. Dermatol., 116(4), 578 (2001). https://doi.org/10.1046/j.1523-1747.2001.01290.x
  3. T. Hirobe, K. Hasegawa, R. Furuya, R. Fujiwara, and K. Sato, Effects of fibroblast-derived factors on the proliferation and differentiation of human melanocytes in culture, J. Dermatol. Sci, 71(1), 45 (2013). https://doi.org/10.1016/j.jdermsci.2013.03.012
  4. E. Schauer, F. Trautinger, A. Kock, A. Schwarz, R. Bhardwaj, M. Simon, J.C. Ansel, T. Schwarz, and T. A. Luger, Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes, J. Clin. Invest., 93(5), 2258 (1994). https://doi.org/10.1172/JCI117224
  5. A. K. Chakraborty, Y. Funasaka, A. Slominski, G. Ermak, J. Hwang, J. M. Pawelek, and M. Ichihashi, Production and release of proopiomelanocortin (POMC) derived peptides by human melanocytes and keratinocytes in culture: regulation by ultraviolet B, Biochim. Biophys. Acta, 1313(2), 130 (1996). https://doi.org/10.1016/0167-4889(96)00063-8
  6. K. Wakamatsu, A. Graham, D. Cook, and A. J. Thody, Characterisation of ACTH peptides in human skin and their activation of the melanocortin-1 receptor, Pigment Cell Res., 10(5), 288 (1997). https://doi.org/10.1111/j.1600-0749.1997.tb00688.x
  7. G. Imokawa, Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders, Pigment Cell Res., 17(2), 96 (2004). https://doi.org/10.1111/j.1600-0749.2003.00126.x
  8. A. Chakraborty, A. Slominski, G. Ermak, J. Hwang, and J. Pawelek, Ultraviolet B and melanocyte-stimulating hormone (MSH) stimulate mRNA production for alpha MSH receptors and proopiomelanocortin-derived peptides in mouse melanoma cells and transformed keratinocytes, J. Invest. Dermatol., 105(5), 655 (1995). https://doi.org/10.1111/1523-1747.ep12324134
  9. M. Khaled, L. Larribere, K. Bille, E. Aberdam, J. P. Ortonne, R. Ballotti, and C. Bertolotto, Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis, J. Biol. Chem., 277(37), 33690 (2002). https://doi.org/10.1074/jbc.M202939200
  10. Y. M. Kim, S. E. Cho, and Y. K. Seo, The activation of melanogenesis by p-CREB and MITF signaling with extremely low-frequency electromagnetic fields on B16F10 melanoma, Life Sci., 162, 25 (2016). https://doi.org/10.1016/j.lfs.2016.08.015
  11. K. Kameyama, C. Sakai, S. Kuge, S. Nishiyama, Y. Tomita, S. Ito, K. Wakamatsu, and V. J. Hearing, The expression of tyrosinase, tyrosinase-related proteins 1 and 2 (TRP1 and TRP2), the silver protein, and a melanogenic inhibitor in human melanoma cells of differing melanogenic activities, Pigment Cell Res., 8(2), 97 (1995). https://doi.org/10.1111/j.1600-0749.1995.tb00648.x
  12. G. Raposo, and M. S. Marks, Melanosomes-dark organelles enlighten endosomal membrane transport, Nat. Rev. Mol. Cell Biol., 8(10), 786 (2007). https://doi.org/10.1038/nrm2258
  13. L. D'Alba and M. D. Shawkey, Melanosomes: biogenesis, properties, and evolution of an ancient organelle, Physiol. Rev., 99(1), 1 (2019). https://doi.org/10.1152/physrev.00059.2017
  14. M. Van Gele, B. Geusens, A. M. Schmitt, L. Aguilar, and J. Lambert, Knockdown of myosin Va isoforms by RNAi as a tool to block melanosome transport in primary human melanocytes, J. Invest. Dermatol., 128(10), 2474 (2008). https://doi.org/10.1038/jid.2008.100
  15. N. Ohbayashi and M. Fukuda, Role of Rab family GTPases and their effectors in melanosomal logistics, J. Biochem., 151(4), 343 (2012). https://doi.org/10.1093/jb/mvs009
  16. J. I. Park, H. Y. Lee, J. E. Lee, C. H. Myung, and J. S. Hwang, Inhibitory effect of 2-methyl-naphtho [1,2,3-de]quinolin-8-one on melanosome transport and skin pigmentation, Sci Rep, 6, 29189 (2016). https://doi.org/10.1038/srep29189
  17. G. Cardinali, S. Ceccarelli, D. Kovacs, N. Aspite, L. V. Lotti, M. R. Torrisi, and M. Picardo, Keratinocyte growth factor promotes melanosome transfer to keratinocytes, J. Invest. Dermatol., 125(6), 1190 (2005). https://doi.org/10.1111/j.0022-202X.2005.23929.x
  18. J. H. Epstein, Photocarcinogenesis, skin cancer, and aging, J. Am. Acad. Dermatol., 9(4), 4 87 ( 1983 ). https://doi.org/10.1016/S0190-9622(83)70160-X
  19. R. Speeckaert, M. Van Gele, M. M. Speeckaert, J. Lambert, and N. van Geel, The biology of hyperpigmentation syndromes, Pigment Cell Melanoma Res, 27(4), 512 (2014). https://doi.org/10.1111/pcmr.12235
  20. M. B. C. Maymone, H. H. Neamah, E. A. Secemsky, and N. A. Vashi, Correlating the dermatology life quality index and skin discoloration impact evaluation questionnaire tools in disorders of hyperpigmentation, J. Dermatol., 45(3), 361 (2018). https://doi.org/10.1111/1346-8138.14172
  21. T. Pillaiyar, M. Manickam, and V. Namasivayam, Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors, J Enzyme Inhib Med Chem, 32(1), 403 (2017). https://doi.org/10.1080/14756366.2016.1256882
  22. M. L. W. Juhasz and M. K. Levin, The role of systemic treatments for skin lightening, J Cosmet Dermatol, 17(6), 1144 (2018). https://doi.org/10.1111/jocd.12747
  23. L. Zhang and T. J. Falla, Cosmeceuticals and peptides, Clin. Dermatol., 27(5), 485 (2009). https://doi.org/10.1016/j.clindermatol.2009.05.013
  24. B. Reddy, T. Jow, and B. M. Hantash, Bioactive oligopeptides in dermatology: Part I, Exp. Dermatol., 21(8), 563 (2012). https://doi.org/10.1111/j.1600-0625.2012.01528.x
  25. B. Reddy, T. Jow, and B. M. Hantash, Bioactive oligopeptides in dermatology: Part II, Exp. Dermatol., 21(8), 569 (2012). https://doi.org/10.1111/j.1600-0625.2012.01527.x
  26. V. V. Pai, P. Bhandari, and P. Shukla, Topical peptides as cosmeceuticals, Indian J Dermatol Venereol Leprol, 83(1), 9 (2017). https://doi.org/10.4103/0378-6323.186500
  27. S. Marepally, C. H. Boakye, P. P. Shah, J.R . Etukala, A. Vemuri, and M. Singh, Design, synthesis of novel lipids as chemical permeation enhancers and development of nanoparticle system for transdermal drug delivery, PLoS ONE, 8(12), e82581 (2013). https://doi.org/10.1371/journal.pone.0082581
  28. H. Kalluri, and A. K. Banga, Transdermal delivery of proteins, AAPS PharmSciTech, 12(1), 431 (2011). https://doi.org/10.1208/s12249-011-9601-6
  29. A. A. Strömstedt, M. Pasupuleti, A. Schmidtchen, and M. Malmsten, Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37, Antimicrob. Agents Chemother., 53(2), 593 (2009). https://doi.org/10.1128/AAC.00477-08