• 제목/요약/키워드: external magnetic field

검색결과 449건 처리시간 0.029초

Terahertz Spectral Characteristics of Electrolyte Solutions under Different Magnetic Fields

  • Shao, Siyu;Huang, Haiyun;Peng, Bo;Wang, Guoyang;Ye, Ping;Wang, Jiahui;Su, Bo;Cui, Hailin;Zhang, Cunlin
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.337-343
    • /
    • 2022
  • Microfluidic chips are new devices that can manipulate liquids at the micrometer level, and terahertz (THz) time-domain spectroscopy has good applicability in biochemical detection. The combination of these two technologies can shorten the distance between sample and THz wave, reduce THz wave absorption by water, and more effectively analyze the kinetics of biochemical reactions in aqueous solutions. This study investigates the effects of different external magnetic field intensities on the THz transmission characteristics of deionized water, CuSO4, CuCl2, (CH3COO)2Cu, Na2SO4, NaCl, and CH3COONa; the THz spectral intensity of the sample solutions decrease with increasing intensity of the applied magnetic field. Analysis shows that the magnetic field leads to a change in the dipole moment of water molecules in water and electrolyte solutions, which enhances not only the hydrogen-bond networking ability of water but also the hydration around ions in electrolyte solutions, increasing the number of hydrogen bonds. Increasing the intensity of this magnetic field further promotes the hydrogen-bond association between water molecules, weakening the THz transmission intensity of the solution.

원형관의 내면정밀가공용 순환식 자기입자분사가공 시스템 개발 (Development of Magnetic Abrasive Jet Machining System for Precision Internal Polishing of Circular Tubes)

  • 강윤희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 추계학술대회 논문집
    • /
    • pp.24-29
    • /
    • 1995
  • A recently developed finishing process using rotating magnetic field is known to be very efficient for the finishing of parts such as vacuum tube, sanitary tube, etc., which are difficult to be finished by the conventional finishing methods as they are generally curbed tubes. But, the finishing system using rotating magnetic field have the defect that is the cross section of workpiece only circle because of internal rotating tool. Therefore, new finishing process of the workpieces which cross section are not circle is important and required. magnetic abrasive jet machining is a new concept finishing process. It is the precision internal finishing method using working fluid mixed with magnetic abrasives, which is jetted into the internal surface of tube. And magnetic poles are equipped on external surface of tube. In this study new concept finishing process or, magnetic abrasive jet machining system was developed. machining condition was predicted using simulation and some characteristics of the finishing process was analyzed.

  • PDF

산화물 초전도체의 자기적 특성 발생 메커니즘 (Occurrence Mechanism of Magnetic Properties in BiSrCaCuO Superconductor)

  • 이상헌
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.439-444
    • /
    • 2006
  • An electromagnetic properties in BiSrCaCuO superconductor were studied. In the measurement of current-voltage properties, the voltage was measured when applying an external magnetic field. The voltage continues to appear after the removal of the magnetic field. This phenomenon was considered as a nonvolatile magnetic effect. The voltage increased with the applied magnetic flux, but it became constant at about $10^{-2}$T. The appearance of the voltage was ascribed to the trapping of magnetic flux.

Light Scattering Analysis on Coagulation Detection with Magnetic Particles

  • Nahm, Kie B.
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.623-628
    • /
    • 2018
  • Clotting properties of human blood are important clinical information to monitor for patients with platelet and coagulation disorders. Most devices used to diagnose these disorders utilize blood plasma together with tissue factors and $Ca^{{+}{+}}$ additives. In some instruments, magnetic particles were mixed with blood samples and a rotating magnetic field was applied, resulting in the rotation of magnetic particles, which was probed by impinging light. The working principle seems obvious yet had not been investigated in depth. We modeled the collective behavior of light propagating through magnetic needles, aligned in the direction of the rotating external magnetic field, with scattering light analysis software. Simulation results indicated that the scattering pattern undergoes periodic undulations with respect to the slant angle of the magnetic needles. Also provided is a means of extracting meaningful information from the scattering measurement.

전단유동에서 자성사슬의 거동에 대한 직접수치해석 (DIRECT NUMERICAL SIMULATION OF MAGNETIC CHAINS IN SIMPLE SHEAR FLOW)

  • 강태곤
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.88-92
    • /
    • 2009
  • When exposed to uniform magnetic fields externally applied, paramagnetic particles acquire dipole moments and the induced moments interacting with each other lead to the formation of chainlike structures or clusters of particles aligned with the field direction. A direct simulation method, based on the Maxwell stress tensor and a fictitious domain method, is applied to solve flows with magnetic chains in simple shear flow. We assumed that the particles constituting the chains are paramagnetic, and inertia of both flow and magnetic particles is negligible. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a fully coupled manner, enabling us to numerically visualize breakup and reformation of the chains by the combined effect of the external field and the shear flow. Simple shear flow with suspended magnetic chains is solved in a periodic domain for a given magnetic field. Dynamics of interacting magnetic chains is found to be significantly affected by a dimensionless parameter called the Mason number, the ratio of the viscous force to the magnetic force in the shear flow. The effect of particle area fraction on the chain dynamics is investigated as well.

  • PDF

New Classes of LC Resonators for Magnetic Sensor Device Using a Glass-Coated Amorphous CO83.2B3.3Si5.9Mn7.6 Microwire

  • Kim, Yong-Seok;Yu, Seong-Cho;Hwang, Myung-Joo;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • 제10권3호
    • /
    • pp.122-127
    • /
    • 2005
  • New classes of LC resonators for micro magnetic sensor device were proposed and fabricated. The first type LC resonator (Type I) consists of a small piece of microwire and two cylindrical electrodes at the end of the microwire without direct contact to its ferromagnetic core. In type I resonator the ferromagnetic core of the microwire and cylindrical electrodes act as an inductor and two capacitors respectively to form a LC circuit. The second type LC resonator (Type II) consists of a solenoidal micro-inductor with a bundle of soft magnetic microwires as a core. The solenoidal micro-inductors fabricated by MEMS technique were $500\sim1,000\;\mu{m}$ in length with $10\sim20$ turns. A capacitor is connected in parallel to the micro-inductor to form a LC circuit. A tiny glass coated $CO_{83.2}B_{3.3}Si_{5.9}Mn_{7.6}$ microwire was fabricated by a glass-coated melt spinning technique. A supergiant magneto-impedance effect was found in a type I resonator as much as 400,000% by precise tuning frequency at around 518.51 MHz. In type II resonator the changes of inductance as a function of external magnetic field in micro-inductors with properly annealed microwire cores were varied as much as 370%. The phase angle between current and voltage was also strongly dependent on the magnetic field. The drastic increments of magnetoimpedance at near the resonance frequency were observed in both types of LC resonators. Accordingly, the sudden change of the phase angle, as large as $180^{\circ}C$, evidenced the occurrence of the resonance at a given external magnetic field.

YBCO SQUID gradiometers의 저주파 잡음 특성 연구 (Low Frequency Noise Properties of YBCO SQUID Gradiometers)

  • 황태종;김인선;김동호;박용기
    • Progress in Superconductivity
    • /
    • 제4권1호
    • /
    • pp.68-73
    • /
    • 2002
  • We have fabricated YBCO SQUID 1st order gradiometers on $30^{\circ}$STO bicrystal substrate. The pickup coil size was 3.8mm$\times$3.8mm and baseline was 5mm. Three types of SQUID gradiometer were designed and tested for unshielded operation; solid pickup coil, pickup coil consisting of 4 parallel $ 50\mu\textrm{m}$-wide loops, and solid pickup coil with flux dam. We have investigated external magnetic field dependence of the SQUID gradiometers on the magnetic field noiseproperties. Significant increase of low frequency noise with the application of static field has been observed in the case of parallel and flux dam type pickup coil above threshold field of $1.3 \mu$T. Magnetic field noise at 1 Hz measured in the magnetically shielding room was 30, 165, 480 fTcm/sup -1/Hz/sup -1/2/ for solid type and slot type and parallel loops type, respectively.

  • PDF

좁은 Channel에서의 자기적 Creep (Magnetic Creep in Narrow Channel)

  • 박영문
    • 전기의세계
    • /
    • 제23권2호
    • /
    • pp.55-61
    • /
    • 1974
  • Nature of magnetic creep phenomena in low coercive force films(Ni 80%-Fe 20%) in form of narrow channels imbedded in high coercive force films is studied in this work. Aluminium is evaporated on the hot glass substrate and eched free in the shape of narrow channels by photoetoetching method. then, Permalloy(Ni 80%, Fe 20%) is deposited on these Aluminium substrate under the uniform field of 30(Oe) to introduce anisotropy. Permalloy film on Al has a high coercive force and one on the substrate devoid of Al has how coercive force. Magnetic revers domain which is introduced at the end of channel grows under the a.c field in hard axis direction, in spite of very weak d.c field in easy axis direction. This creeping is investigated as a function of external fields and channel widths. Permalloy film thickness is 500.angs.-900.angs. and channel widths are 40, 51, 65, 81, 115.mu. respectively. Creeping increases as external field increases while it decreases with channel width decrease. Creep velocity in channels depends on the a.c field along hard axis, d.c field along easy axis and channel widths and its range is 1-10cm/sec in this experiment. From study of dependence of creep velocity on channel width, it can be concluded that creep velocity is expressed in form of v=v$_{0}$ exp .alpha.(H-H$_{0}$) where .alpha. is a function of a.c field along hard axis and H is driving d.c field along easy axis, H$_{0}$ is not a coercive force of film as usuall expected but the d.c threshold field along easy axis which is a function of channel width. This characteristic is also confirmed by the study of dependence of creep velocity upon easy axis field strength. Value of .alpha. obtained is 1.3-2.3cm/sec We depending upon film charactor, hard axis field strength and frequency.uency.

  • PDF