• Title/Summary/Keyword: extensions

Search Result 843, Processing Time 0.03 seconds

A GENERALIZATION OF ARMENDARIZ AND NI PROPERTIES

  • Li, Dan;Piao, Zhelin;Yun, Sang Jo
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.741-750
    • /
    • 2018
  • Antoine showed that the properties of Armendariz and NI are independent of each other. The study of Armendariz and NI rings has been doing important roles in the research of zero-divisors in noncommutative ring theory. In this article we concern a new class of rings which generalizes both Armendariz and NI rings. The structure of such sort of ring is investigated in relation with near concepts and ordinary ring extensions. Necessary examples are examined in the procedure.

REVERSIBILITY OVER UPPER NILRADICALS

  • Jung, Da Woon;Lee, Chang Ik;Piao, Zhelin;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.447-454
    • /
    • 2020
  • The studies of reversible and NI rings have done important roles in noncommutative ring theory. A ring R shall be called QRUR if ab = 0 for a, b ∈ R implies that ba is contained in the upper nilradical of R, which is a generalization of the NI ring property. In this article we investigate the structure of QRUR rings and examine the QRUR property of several kinds of ring extensions including matrix rings and polynomial rings. We also show that if there exists a weakly semicommutative ring but not QRUR, then Köthe's conjecture does not hold.

On the ring of integers of cyclotomic function fields

  • Bae, Sunghan;Hahn, Sang-Geun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.153-163
    • /
    • 1992
  • Carlitz module is used to study abelian extensions of K=$F_{q}$(T). In number theory every abelian etension of Q is contained in a cyclotomic field. Similarly every abelian extension of $F_{q}$(T) with some condition on .inf. is contained in a cyclotomic function field. Hence the study of cyclotomic function fields in analogy with cyclotomic fields is an important subject in number theory. Much are known in this direction such as ring of integers, class groups and units ([G], [G-R]). In this article we are concerned with the ring of integers in a cyclotomic function field. In [G], it is shown that the ring of integers is generated by a primitive root of the Carlitz module using the ramification theory and localization. Here we will give another proof, which is rather elementary and explicit, of this fact following the methods in [W].[W].

  • PDF

On the $Z_p$-extensions over $Q(sqrt{m})$

  • Kim, Jae-Moon
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.233-242
    • /
    • 1998
  • Let $k = Q(\sqrt{m})$ be a real quadratic field. In this paper, the following theorems on p-divisibility of the class number h of k are studied for each prime pp. Theorem 1. If the discriminant of k has at least three distinct prime divisors, then 2 divides h. Theorem 2. If an odd prime p divides h, then p divides $B_{a,\chi\omega^{-1}}$, where $\chi$ is the nontrivial character of k, and $\omega$ is the Teichmuller character for pp. Theorem 3. Let $h_n$ be the class number of $k_n$, the nth layer of the $Z_p$-extension $k_\infty$ of k. If p does not divide $B_{a,\chi\omega^{-1}}$, then $p \notmid h_n$ for all $n \geq 0$.

  • PDF

ON v-MAROT MORI RINGS AND C-RINGS

  • Geroldinger, Alfred;Ramacher, Sebastian;Reinhart, Andreas
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • C-domains are defined via class semigroups, and every C-domain is a Mori domain with nonzero conductor whose complete integral closure is a Krull domain with finite class group. In order to extend the concept of C-domains to rings with zero divisors, we study v-Marot rings as generalizations of ordinary Marot rings and investigate their theory of regular divisorial ideals. Based on this we establish a generalization of a result well-known for integral domains. Let R be a v-Marot Mori ring, $\hat{R}$ its complete integral closure, and suppose that the conductor f = (R : $\hat{R}$) is regular. If the residue class ring R/f and the class group C($\hat{R}$) are both finite, then R is a C-ring. Moreover, we study both v-Marot rings and C-rings under various ring extensions.

SKEW LAURENT POLYNOMIAL EXTENSIONS OF BAER AND P.P.-RINGS

  • Nasr-Isfahani, Alireza R.;Moussavi, Ahmad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1041-1050
    • /
    • 2009
  • Let R be a ring and ${\alpha}$ a monomorphism of R. We study the skew Laurent polynomial rings R[x, x$^{-1}$; ${\alpha}$] over an ${\alpha}$-skew Armendariz ring R. We show that, if R is an ${\alpha}$-skew Armendariz ring, then R is a Baer (resp. p.p.-)ring if and only if R[x, x$^{-1}$; ${\alpha}$] is a Baer (resp. p.p.-) ring. Consequently, if R is an Armendariz ring, then R is a Baer (resp. p.p.-)ring if and only if R[x, x$^{-1}$] is a Baer (resp. p.p.-)ring.

ANNULUS CRITERIA FOR OSCILLATION OF SECOND ORDER DAMPED ELLIPTIC EQUATIONS

  • Xu, Zhiting
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1183-1196
    • /
    • 2010
  • Some annulus oscillation criteria are established for the second order damped elliptic differential equation $$\sum\limits_{i,j=1}^N D_i[a_{ij}(x)D_jy]+\sum\limits_{i=1}^Nb_i(x)D_iy+C(x,y)=0$$ under quite general assumption that they are based on the information only on a sequence of annuluses of $\Omega(r_0)$ rather than on the whole exterior domain $\Omega(r_0)$. Our results are extensions of those due to Kong for ordinary differential equations. In particular, the results obtained here can be applied to the extreme case such as ${\int}_{\Omega(r0)}c(x)dx=-\infty$.

IDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS

  • Son, Jin-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1045-1073
    • /
    • 2014
  • The study of the identities of symmetry for the Bernoulli polynomials arises from the study of Gauss's multiplication formula for the gamma function. There are many works in this direction. In the sense of p-adic analysis, the q-Bernoulli polynomials are natural extensions of the Bernoulli and Apostol-Bernoulli polynomials (see the introduction of this paper). By using the N-fold iterated Volkenborn integral, we derive serval identities of symmetry related to the q-extension power sums and the higher order q-Bernoulli polynomials. Many previous results are special cases of the results presented in this paper, including Tuenter's classical results on the symmetry relation between the power sum polynomials and the Bernoulli numbers in [A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001), no. 3, 258-261] and D. S. Kim's eight basic identities of symmetry in three variables related to the q-analogue power sums and the q-Bernoulli polynomials in [Identities of symmetry for q-Bernoulli polynomials, Comput. Math. Appl. 60 (2010), no. 8, 2350-2359].

SIMPLICIAL WEDGE COMPLEXES AND PROJECTIVE TORIC VARIETIES

  • Kim, Jin Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.265-276
    • /
    • 2017
  • Let K be a fan-like simplicial sphere of dimension n-1 such that its associated complete fan is strongly polytopal, and let v be a vertex of K. Let K(v) be the simplicial wedge complex obtained by applying the simplicial wedge operation to K at v, and let $v_0$ and $v_1$ denote two newly created vertices of K(v). In this paper, we show that there are infinitely many strongly polytopal fans ${\Sigma}$ over such K(v)'s, different from the canonical extensions, whose projected fans ${Proj_v}_i{\Sigma}$ (i = 0, 1) are also strongly polytopal. As a consequence, it can be also shown that there are infinitely many projective toric varieties over such K(v)'s such that toric varieties over the underlying projected complexes $K_{{Proj_v}_i{\Sigma}}$ (i = 0, 1) are also projective.

ON COMMUTATIVITY OF SKEW POLYNOMIALS AT ZERO

  • Jin, Hai-Lan;Kaynarca, Fatma;Kwak, Tai Keun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.51-69
    • /
    • 2017
  • We, in this paper, study the commutativity of skew polynomials at zero as a generalization of an ${\alpha}-rigid$ ring, introducing the concept of strongly skew reversibility. A ring R is be said to be strongly ${\alpha}-skew$ reversible if the skew polynomial ring $R[x;{\alpha}]$ is reversible. We examine some characterizations and extensions of strongly ${\alpha}-skew$ reversible rings in relation with several ring theoretic properties which have roles in ring theory.