SKEW LAURENT POLYNOMIAL EXTENSIONS OF BAER AND P.P.-RINGS

Alireza R. Nasr-Isfahani and Ahmad Moussavi

Abstract

Let R be a ring and α a monomorphism of R. We study the skew Laurent polynomial rings $R\left[x, x^{-1} ; \alpha\right]$ over an α-skew Armendariz ring R. We show that, if R is an α-skew Armendariz ring, then R is a Baer (resp. p.p.-)ring if and only if $R\left[x, x^{-1} ; \alpha\right]$ is a Baer (resp. p.p.-) ring. Consequently, if R is an Armendariz ring, then R is a Baer (resp. p.p.-)ring if and only if $R\left[x, x^{-1}\right]$ is a Baer (resp. p.p.-)ring.

1. Introduction

Throughout this paper R denotes an associative ring with unity and α : $R \rightarrow R$ is an endomorphism, which is not assumed to be surjective. We denote $R[x ; \alpha]$ the Ore extension whose elements are the polynomials $\sum_{i=0}^{n} r_{i} x^{i}, r_{i} \in R$, where the addition is defined as usual and the multiplication subject to the relation $x a=\alpha(a) x$ for any $a \in R$. The set $\left\{x^{j}\right\}_{j \geq 0}$ is easily seen to be a left Ore subset of $R[x ; \alpha]$, so that one can localize $R[x ; \alpha]$ and form the skew Laurent polynomial ring $R\left[x, x^{-1} ; \alpha\right]$. Elements of $R\left[x, x^{-1} ; \alpha\right]$ are finite sums of elements of the form $x^{-j} r x^{i}$, where $r \in R$ and i and j are nonnegative integers.

A ring R is called Armendariz if whenever polynomials $f(x)=a_{0}+a_{1} x+\cdots+$ $a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for each i, j. The term Armendariz was introduced by Rege and Chhawchharia [20]. This nomenclature was used by them since it was Armendariz [2, Lemma 1] who initially showed that a reduced ring (i.e., a ring without nonzero nilpotent elements) always satisfies this condition.

According to Krempa [16], an endomorphism α of a ring R is called to be rigid if $a \alpha(a)=0$ implies $a=0$ for $a \in R$. A ring R is called α-rigid if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism and α-rigid rings are reduced rings by Hong et al. [10].

[^0]Properties of α-rigid rings have been studied in Krempa [16], Hong et al. [10], and Hirano [9].

A generalization of α-rigid rings and Armendariz rings is introduced and well studied by C. Y. Hong, N. K. Kim, and T. Kwak in [11].

By Hong et al. [11], a ring R is called α-skew Armendariz if, for polynomials $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ in the skew polynomial ring $R[x ; \alpha], f(x) g(x)=0$ implies that $a_{i} \alpha^{i}\left(b_{j}\right)=0$ for each i, j. By [10] every α-rigid ring is reduced and α-skew Armendariz; and by [18] reduced α-skew Armendariz rings are α-rigid.

Hong et al. in [11, Theorems 21 and 22] proved that:
If α is an automorphism of a ring R with $\alpha(e)=e$ for any $e^{2}=e \in R$, and R is an α-skew Armendariz ring, then R is a Baer (resp. p.p.-)ring if and only if $R[x ; \alpha]$ is a Baer (resp. p.p.-)ring.

Following Hong et al.'s results [10 and 11], in this paper we study on the skew Laurent polynomial rings $R\left[x, x^{-1} ; \alpha\right]$ when R is an α-skew Armendariz ring. We first give a short and simple proof of [18] and prove that, for an endomorphism α of a ring R, R is an α-rigid ring if and only if α is injective, R is reduced and α-skew Armendariz. We then show that:

If α is a monomorphism of a ring R and R is an α-skew Armendariz ring, then R is a Baer (resp. p.p.-)ring if and only if the skew Laurent polynomial ring $R\left[x, x^{-1} ; \alpha\right]$ is a Baer (resp. p.p.-)ring. Consequently, we deduce that:

If R is an Armendariz ring, then R is a Baer (resp. p.p.-)ring if and only if the Laurent polynomial ring $R\left[x, x^{-1}\right]$ is a Baer (resp. p.p.-)ring.

Finally we construct some new examples of non reduced α-skew Armendariz rings.

2. α-skew Armendariz rings

In this section we provide a simple proof of Matzuk's main result [18]. Some equivalent characterizations of α-skew Armendariz rings is given and some properties of the skew Laurent polynomial ring $R\left[x, x^{-1} ; \alpha\right]$, over an α-skew Armendariz ring, is studied.

We start by observing that for an endomorphism α of a ring R, R is an α-skew Armendariz ring, if for elements $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and $g(x)=b_{0}+\cdots+b_{m} x^{m} \in R[x ; \alpha], f(x) g(x)=0$ implies $a_{0} b_{j}=0$ for all integers $0 \leq j \leq m$. If we take $\alpha=i d_{R}$, we deduce the following equivalent condition for a ring to be Armendariz:

A ring R is Armendariz if and only if for every polynomials $f(x)=a_{0}+$ $a_{1} x+\cdots+a_{n} x^{n}$ and $g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ in $R[x], f(x) g(x)=0$ implies $a_{0} b_{j}=0$ for each $0 \leq j \leq m$.

Since the skew Laurent polynomial ring $R\left[x, x^{-1} \alpha\right]$ is a localization of $R[x ; \alpha]$ with respect to the set of powers of x, we prove an equivalent condition for a ring to be α-skew Armendariz, related to the skew Laurent polynomial ring $R\left[x, x^{-1} \alpha\right]$:

Proposition 1. Let R be a ring and α a monomorphism of R. Then R is an α-skew Armendariz ring if and only if for elements $f(x)=x^{r} a_{r}+x^{r+1} a_{r+1}+$ $\cdots+a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and $g(x)=b_{0}+\cdots+b_{m} x^{m} \in R\left[x, x^{-1} ; \alpha\right]$, where r is a negative integer, $f(x) g(x)=0$ implies $a_{0} b_{j}=0$ for all integers $0 \leq j \leq m$.

Proof. Suppose that R is an α-skew Armendariz ring and $f(x) g(x)=0$ for elements $f(x)=x^{r} a_{r}+x^{r+1} a_{r+1}+\cdots+x^{-1} a_{-1}+a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and $g(x)=b_{0}+\cdots+b_{m} x^{m} \in R\left[x, x^{-1} ; \alpha\right]$, where r is a negative integer. We show that this implies that $a_{0} b_{j}=0$ for all integers $0 \leq j \leq m$. Multiply $f(x) g(x)=0$ by x^{-r} from left yields

$$
\begin{aligned}
& \left(a_{r}+x a_{r+1}+\cdots+x^{-r-1} a_{-1}+x^{-r} a_{0}+x^{-r} a_{1} x+\cdots+x^{-r} a_{n} x^{n}\right) \\
& \quad \cdot\left(b_{0}+\cdots+b_{m} x^{m}\right)=0
\end{aligned}
$$

Hence $a_{r} b_{j}=0$ for each $0 \leq j \leq m$, since R is α-skew Armendariz. Repeating the argument for

$$
\begin{aligned}
& \left(a_{r+1}+x a_{r+2}+\cdots+x^{-r} a_{-1}+x^{-r-1} a_{0}+x^{-r-1} a_{1} x+\cdots+x^{-r-1} a_{n} x^{n}\right) \\
& \quad \cdot\left(b_{0}+\cdots+b_{m} x^{m}\right)=0
\end{aligned}
$$

yields $a_{r+1} b_{j}=0$ for each $0 \leq j \leq m$. Continuing in this way we get $\left(a_{0}+\right.$ $\left.a_{1} x+\cdots+a_{n} x^{n}\right)\left(b_{0}+\cdots+b_{m} x^{m}\right)=0$, and α-skew Armendariz condition implies that $a_{0} b_{j}=0$ for each $0 \leq j \leq m$.
Theorem 2. Let α be an endomorphism of a ring R. Then R is an α-rigid ring if and only if α is injective, R is reduced and α-skew Armendariz.
Proof. Suppose that R is a reduced α-skew Armendariz ring and $a \alpha(a)=0$ for $a \in R$. Now, consider $h(x)=\alpha(a)-\alpha(a) x$ and $k(x)=a+\alpha(a) x \in R[x ; \alpha]$. Then $h(x) k(x)=0$. Since R is α-skew Armendariz, we have $\alpha(a) \alpha(a)=0$. But R is reduced and α is a monomorphism, therefore $a=0$. The converse follows by [10, Proposition 6].

Now we consider D. A. Jordan's construction of the ring $A(R, \alpha)$ (See [13], for more details). Let $A(R, \alpha)$ be the subset $\left\{x^{-i} r x^{i} \mid r \in R, i \geq 0\right\}$ of the skew Laurent polynomial ring $R\left[x, x^{-1} ; \alpha\right]$. For each $j \geq 0, x^{-i} r x^{i}=$ $x^{-(i+j)} \alpha^{j}(r) x^{(i+j)}$. It follows that the set of all such elements forms a subring of $R\left[x, x^{-1} ; \alpha\right]$ with $x^{-i} r x^{i}+x^{-j} r x^{j}=x^{-(i+j)}\left(\alpha^{j}(r)+\alpha^{i}(s)\right) x^{(i+j)}$ and $\left(x^{-i} r x^{i}\right)\left(x^{-j} s x^{j}\right)=x^{-(i+j)} \alpha^{j}(r) \alpha^{i}(s) x^{(i+j)}$ for $r, s \in R$ and $i, j \geq 0$. Note that α is actually an automorphism of $A(R, \alpha)$. We have $R\left[x, x^{-1} ; \alpha\right] \simeq$ $A(R, \alpha)\left[x, x^{-1} ; \alpha\right]$, by way of an isomorphism which maps $x^{-i} r x^{j}$ to $\alpha^{-i}(r) x^{j-i}$.
Theorem 3. A ring R is α-rigid if and only if $R\left[x, x^{-1} ; \alpha\right]$ is a reduced ring.
Proof. If $R\left[x, x^{-1} ; \alpha\right]$ is a reduced ring and for $a \in R, a \alpha(a)=0$ then $a x a x=$ 0 and hence $a x=0$. So R is α-rigid. Conversely assume that R is an α rigid ring. We first show that the Jordan extension $A(R, \alpha)$ is α-rigid. Let $\left(x^{-i} r x^{i}\right) \alpha\left(x^{-i} r x^{i}\right)=0$, where $i \geq 0$ and $r \in R$. Then $r \alpha(r)=0$, so $r=0$, since R is α-rigid. Therefore $A(R, \alpha)$ is α-rigid. Since by [13], $R\left[x, x^{-1} ; \alpha\right] \simeq$
$A(R, \alpha)\left[x, x^{-1} ; \alpha\right]$, we will assume that α is an automorphism of R and R is an α-rigid ring. Assume that $f^{2}=0$, with $f(x)=a_{m} x^{m}+a_{m+1} x^{m+1}+\cdots+a_{n} x^{n} \in$ $R\left[x, x^{-1} ; \alpha\right]$, and integers m, n. Then we have $\left(a_{n} x^{n}\right)\left(a_{n} x^{n}\right)=a_{n} \alpha^{n}\left(a_{n}\right) x^{2 n}=$ 0 . Since R is α-rigid, $a_{n}=0$. Hence we can deduce that $f=0$ and the result follows.

The following proposition partially extends [10, Proposition 5] and hence [8, Lemma 3] and [16, Theorem 3.3].

Proposition 4. Let R be an α-skew Armendariz ring. Then for each idempotent element $e \in R$, we have $\alpha(e)=e$.
Proof. Consider $f(x)=1-e+(1-e) \alpha(e) x$ and $g(x)=e+(e-1) \alpha(e) x$. Then $f(x) g(x)=0$. Since R is α-skew Armendariz, $(1-e)(e-1) \alpha(e)=0$ and hence $\alpha(e)=e \alpha(e)$. Now suppose that $h(x)=e+e(1-\alpha(e)) x$ and $k(x)=1-e-e(1-\alpha(e)) x$. Then $h(x) k(x)=0$. Hence $e(e(1-\alpha(e))=0$ and so $e=e \alpha(e)=\alpha(e)$.
Theorem 5. Every α-skew Armendariz ring is abelian.
Proof. Let $r \in R$ and $e^{2}=e \in R$. Consider $h(x)=e-e r(1-e) x$ and $k(x)=(1-e)+e r(1-e) x \in R[x ; \alpha]$. We have $h(x) k(x)=0$. Since R is α-skew Armendariz, eer $(1-e)=0$. Thus er $=$ ere. Now take $f=(1-e)-(1-$ $e) r e x$ and $g=e+(1-e) r e x$. Then $f g=0$. Since R is α-skew Armendariz, $(1-e)(1-e) r e=0$. So re $=e r e$. Therefore $r e=e r e=e r$, and that R is abelian.

Corollary 6. Every Armendariz ring is abelian.

3. Skew Laurent polynomial extensions of Baer and p.p.-rings

Now we turn our attention to the relationship between the Baerness and p.p.property of a ring R and these of the skew Laurent polynomial ring $R\left[x, x^{-1} ; \alpha\right]$ in case R is an α-skew Armendariz ring.
Theorem 7. Let R be a ring and α a monomorphism of R. If R is α-skew Armendariz and $e^{2}=e \in R\left[x, x^{-1} ; \alpha\right]$, then $e \in R$.

Proof. Let $e=x^{-i_{1}} e_{1} x^{j_{1}}+\cdots+x^{-i_{n}} e_{n} x^{j_{n}}$, with $e_{i} \in R$ and nonnegative integers $i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}$. Let $i=\max \left\{i_{1}, \ldots, i_{n}\right\}$. Then

$$
\begin{aligned}
e & =x^{-i}\left(x^{i-i_{1}} e_{1} x^{j_{1}}+\cdots+x^{i-i_{n}} e_{n} x^{j_{n}}\right) \\
& =x^{-i}\left(\alpha^{i-i_{1}}\left(e_{1}\right) x^{i-i_{1}+j_{1}}+\cdots+\alpha^{i-i_{n}}\left(e_{n}\right) x^{i-i_{n}+j_{n}}\right) .
\end{aligned}
$$

Since $e(1-e)=(1-e) e=0$, we have

$$
(1-e) x^{-i}\left(\alpha^{i-i_{1}}\left(e_{1}\right) x^{i-i_{1}+j_{1}}+\cdots+\alpha^{i-i_{n}}\left(e_{n}\right) x^{i-i_{n}+j_{n}}\right)=0 .
$$

Thus

$$
\left(1-x^{i} e x^{-i}\right)\left(\alpha^{i-i_{1}}\left(e_{1}\right) x^{i-i_{1}+j_{1}}+\cdots+\alpha^{i-i_{n}}\left(e_{n}\right) x^{i-i_{n}+j_{n}}\right)=0
$$

But $e=x^{-i_{1}} e_{1} x^{j_{1}}+\cdots+x^{-i_{n}} e_{n} x^{j_{n}}$, so $x^{i} e x^{-i}=\alpha^{i-i_{1}}\left(e_{1}\right) x^{j_{1}-i_{1}}+\cdots+$ $\alpha^{i-i_{n}}\left(e_{n}\right) x^{j_{n}-i_{n}}$. Thus

$$
\begin{aligned}
& \left(1-\alpha^{i-i_{1}}\left(e_{1}\right) x^{j_{1}-i_{1}}-\cdots-\alpha^{i-i_{n}}\left(e_{n}\right) x^{j_{n}-i_{n}}\right) \\
& \quad \cdot\left(\alpha^{i-i_{1}}\left(e_{1}\right) x^{i-i_{1}+j_{1}}+\cdots+\alpha^{i-i_{n}}\left(e_{n}\right) x^{i-i_{n}+j_{n}}\right)=0 .
\end{aligned}
$$

Now, if for all $1 \leq t \leq n, j_{t} \neq i_{t}$, then by Proposition 4, we have $\alpha^{i-i_{t}}\left(e_{t}\right)=0$ for all $1 \leq t \leq n$, and hence $e_{1}=e_{2}=\cdots=e_{n}=0$ and that $e=0$, so the result follows. Otherwise for some $1 \leq t \leq n, j_{t}=i_{t}$. In this case it is enough to assume that for only one index t with $1 \leq t \leq n, i_{t}=j_{t}$. This is because, if $i_{t}=j_{t}$ and $i_{k}=j_{k}$, with $1 \leq k<t \leq n$, then we have,

$$
\begin{aligned}
x^{-i_{t}} e_{t} x^{j_{t}}+x^{-i_{k}} e_{k} x^{j_{k}} & =x^{-i_{t}-i_{k}} \alpha^{i_{k}}\left(e_{t}\right) x^{j_{t}+j_{k}}+x^{-i_{t}-i_{k}} \alpha^{i_{t}}\left(e_{k}\right) x^{j_{t}+j_{k}} \\
& =x^{-i_{s}}\left[\alpha^{i_{k}}\left(e_{t}\right)+\alpha^{i_{t}}\left(e_{k}\right)\right] x^{j_{s}} .
\end{aligned}
$$

Therefore we assume that for only one index t with $1 \leq t \leq n, i_{t}=j_{t}$. In this case we have $\left(1-\alpha^{i-i_{t}}\left(e_{t}\right)\right)\left(\alpha^{i-i_{l}}\left(e_{l}\right)\right)=0$ for all $1 \leq l \leq n$. Thus $\alpha^{i-i_{t}}\left(e_{t}\right)=\alpha^{i-i_{t}}\left(e_{t}\right) \alpha^{i-i_{t}}\left(e_{t}\right)$. Since α is a monomorphism, $e_{t}=\overline{e_{t}^{2}}$. Also for each $k \neq t, \alpha^{i-i_{k}}\left(e_{k}\right)=\alpha^{i-i_{t}}\left(e_{t}\right) \alpha^{i-i_{k}}\left(e_{k}\right)$.
(1) On the other hand, $e(1-e)=0$ implies that $x^{-i}\left(\alpha^{i-i_{1}}\left(e_{1}\right) x^{i-i_{1}+j_{1}}+\right.$ $\left.\cdots+\alpha^{i-i_{n}}\left(e_{n}\right) x^{i-i_{n}+j_{n}}\right)(1-e)=0$. But $(1-e)=x^{-i}\left(x^{i}-\alpha^{i-i_{1}}\left(e_{1}\right) x^{i-i_{1}+j_{1}}-\right.$ $\left.\cdots-\alpha^{i-i_{n}}\left(e_{n}\right) x^{i-i_{n}+j_{n}}\right)$. So

$$
\begin{aligned}
& {\left[\alpha^{i-i_{1}}\left(e_{1}\right) x^{i-i_{1}+j_{1}}+\cdots+\alpha^{i-i_{n}}\left(e_{n}\right) x^{i-i_{n}+j_{n}}\right] } \\
& \cdot x^{-i}\left[x^{i}-\alpha^{i-i_{1}}\left(e_{1}\right) x^{i-i_{1}+j_{1}}-\cdots-\alpha^{i-i_{n}}\left(e_{n}\right) x^{i-i_{n}+j_{n}}\right] \\
= & {\left[\alpha^{i-i_{1}}\left(e_{1}\right) x^{j_{1}-i_{1}}+\cdots+\alpha^{i-i_{n}}\left(e_{n}\right) x^{j_{n}-i_{n}}\right] } \\
& \cdot\left[x^{i}-\alpha^{i-i_{1}}\left(e_{1}\right) x^{i-i_{1}+j_{1}}-\cdots-\alpha^{i-i_{n}}\left(e_{n}\right) x^{i-i_{n}+j_{n}}\right] .
\end{aligned}
$$

Since $i_{t}=j_{t}$ and R is α-skew Armendariz, $\alpha^{i-i_{t}}\left(e_{t}\right)\left(1-\alpha^{i-i_{t}}\left(e_{t}\right)\right)=0$ and $\alpha^{i-i_{t}}\left(e_{t}\right) \alpha^{i-i_{k}}\left(e_{k}\right)=0$ for each $k \neq t$.
(2) By (1) and (2) we have for each $k \neq t, \alpha^{i-i_{k}}\left(e_{k}\right)=\alpha^{i-i_{t}}\left(e_{t}\right) \alpha^{i-i_{k}}\left(e_{k}\right)=$ 0 , so $e_{k}=0$, as α is injective. Thus $e=x^{-i_{t}} e_{t} x^{i_{t}}$. By Proposition 1, $\alpha^{i_{t}}\left(e_{t}\right)=$ e_{t}, so $e=x^{-i_{t}} \alpha^{i_{t}}\left(e_{t}\right) x^{i_{t}}=x^{-i_{t}} x^{i_{t}} e_{t}=e_{t}$. Therefore the result follows.

Corollary 8. If R is an Armendariz ring and $e^{2}=e \in R\left[x, x^{-1}\right]$, then $e \in R$.
Corollary 9. Let R be an α-skew Armendariz ring with α a monomorphism of R. Then $R\left[x, x^{-1} ; \alpha\right]$ is an abelian ring.

Corollary 10. Let R be an Armendariz ring, then $R\left[x, x^{-1}\right]$ is an abelian ring.
Recall that R is a Baer ring if the right annihilator of every non-empty subset of R is generated by an idempotent of R. These definitions are leftright symmetric. Kaplansky [13] defined an AW*-algebra as a C^{*}-algebra with the stronger property that the right annihilator of the nonempty subset is generated by a projection. A ring R is called a right (resp. left) p.p.-ring if every principal right (resp. left) ideal is projective (equivalently, if the right
(resp. left) annihilator of an element of R is generated (as a right (resp. left) ideal) by an idempotent of R). R is called a p.p.-ring if it is both right and left p.p.

The next example shows that Baer property of a ring R doesn't extend, in general, to the polynomial ring $R[x]$ or Laurent polynomial ring $R\left[x, x^{-1}\right]$:

Example 11. From [14, p. 39], $M_{2}\left(\mathbb{Z}_{3}\right)$ is a Baer ring. But neither $M_{2}\left(\mathbb{Z}_{3}\right)[x]$ nor $M_{2}\left(\mathbb{Z}_{3}\right)\left[x, x^{-1}\right]$ is a Baer ring. In fact the right annihilator

$$
r\left(\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) x\right)
$$

cannot be generated (as a right ideal) by an idempotent.
Hong et al. in [11, Theorem 21] proved that, for an automorphism α of a ring R with $\alpha(e)=e$ for any $e^{2}=e \in R$, if R is an α-skew Armendariz ring, then R is a Baer (resp. p.p.-)ring if and only if $R[x ; \alpha]$ is a Baer (resp. p.p.-)ring.

Theorem 12. Let R be an α-skew Armendariz ring and α a monomorphism of R. Then R is a Baer ring if and only if $R\left[x, x^{-1} ; \alpha\right]$ is a Baer ring.

Proof. Assume that R is a Baer ring. Since R is α-skew Armendariz, it is abelian by Corollary 9. But abelian Baer rings are reduced by [4, Corollary 1.15]. By Theorem 2, reduced α-skew Armendariz rings are α-rigid. Thus $A(R ; \alpha)$ is α-rigid, as in the proof of Theorem 3. Since by [13], $R\left[x, x^{-1} ; \alpha\right] \simeq$ $A(R, \alpha)\left[x, x^{-1} ; \alpha\right]$, we will assume that α is an automorphism of R and R is an α-rigid Baer ring. Since α is an automorphism of R, we can take each element of $R\left[x, x^{-1} ; \alpha\right]$ as $f=x^{r} a_{r}+x^{r+1} a_{r+1}+\cdots+a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, where r and n are integers. Let I be a nonempty subset of $R\left[x, x^{-1} ; \alpha\right]$ and I_{0} be the set of all coefficients of elements of I. Then I_{0} is a nonempty subset of R and so $r_{R}\left(I_{0}\right)=e R$ for some idempotent $e \in R$. Using Proposition 4, we see that $e \in r_{R\left[x, x^{-1} ; \alpha\right]}(I)$, hence we get $e R\left[x, x^{-1} ; \alpha\right] \subseteq r_{R\left[x, x^{-1} ; \alpha\right]}(I)$. Now, we let $0 \neq g=b_{k} x^{k}+b_{k+1} x^{k+1}+\cdots+b_{0}+\cdots+b_{m} x^{m} \in r_{R\left[x, x^{-1} ; \alpha\right]}(I)$. Then $I g=0$ and hence $f g=0$ for any $f \in I$.

Let $f=x^{r} a_{r}+x^{r+1} a_{r+1}+\cdots+a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in I$, where r and n are integers. Then we have $a_{r} b_{k}=0$ and $a_{r} b_{k+1}+\alpha\left(a_{r+1}\right) \alpha\left(b_{k}\right)=0$. This implies that $a_{r} b_{k+1} \alpha\left(a_{r}\right)=0$ and that $a_{r} b_{k+1}=0$. Assume inductively that $a_{r} b_{k}=a_{r} b_{k+1}=\cdots=a_{r} b_{t-1}=0$. Now we show that $a_{r} b_{t}=0$. We have $a_{r} b_{t}+\alpha\left(a_{r+1} b_{t-1}\right)+\alpha^{2}\left(a_{r+2} b_{t-2}\right)+\cdots+\alpha^{t-k} \alpha\left(a_{r+t-k} b_{k}\right)=0$. Thus we have $a_{r} b_{t} \alpha\left(a_{r}\right)=0$ and so $a_{r} b_{t}=0$. Therefore $a_{r} b_{j}=0$ for all $k \leq j \leq m$. Now we have $\left(x^{r+1} a_{r+1}+\cdots+a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right) g=0$. The same argument as above shows that $a_{r+1} b_{j}=0$ for all $k \leq j \leq m$. Repeating this process it implies that $a_{i} b_{j}=0$ for all $r \leq i \leq n$ and $k \leq j \leq m$. Thus $b_{j} \in r_{R}\left(I_{0}\right)=e R$ for $k \leq j \leq m$, and so $g=e g \in e R\left[x, x^{-1} ; \alpha\right]$. Consequently $e R\left[x, x^{-1} ; \alpha\right]=$ $r_{R\left[x, x^{-1} ; \alpha\right]}(I)$. Therefore $R\left[x, x^{-1} ; \alpha\right]$ is a Baer ring.

Conversely, assume that $R\left[x, x^{-1} ; \alpha\right]$ is a Baer ring. Let $U \subseteq R$. Then Theorem 7 implies that $r_{R\left[x, x^{-1} ; \alpha\right]}(U)=e R\left[x, x^{-1} ; \alpha\right]$ for some idempotent element $e \in R$. Thus

$$
r_{R}(U)=r_{R\left[x, x^{-1} ; \alpha\right]}(U) \cap R=e R\left[x, x^{-1} ; \alpha\right] \cap R=e R,
$$

and the result follows.
Corollary 13. If R is an Armendariz ring, then R is a Baer ring if and only if the Laurent polynomial ring $R\left[x, x^{-1}\right]$ is a Baer ring.

Notice that in [5, Lemma 1.7] Birkenmeier, Kim, and Park in order to characterize some idempotents of $R\left[x ; x^{-1}\right]$ or $R[[x ; x-1]]$ and hence study the Baerness of either $R\left[x ; x^{-1}\right]$ or $R[[x ; x-1]]$, involves a long and quite technical calculation.

Corollary 14. If R is a reduced ring, then R is a Baer ring if and only if the Laurent polynomial ring $R\left[x, x^{-1}\right]$ is a Baer ring.

Theorem 15. Let R be an α-skew Armendariz ring and α a monomorphism of R. Then R is a p.p.-ring if and only if $R\left[x, x^{-1} ; \alpha\right]$ is a p.p.-ring.

Proof. Assume that R is a p.p.-ring. Since R is α-skew Armendariz, it is abelian by Theorem 5. But abelian p.p.-rings are reduced by [4, Corollary 1.15]. By Theorem 2, reduced α-skew Armendariz rings are α-rigid. As the proof of Theorem 3, the Jordan extension $A(R, \alpha)$ is α-rigid, and we will assume that α is an automorphism and R is α-rigid. Since α is an automorphism of R, we can take each element of $R\left[x, x^{-1} ; \alpha\right]$ as $f=x^{r} a_{r}+x^{r+1} a_{r+1}+\cdots+a_{0}+a_{1} x+\cdots+$ $a_{n} x^{n}$, where r and n are integers. Let $f=x^{r} a_{r}+x^{r+1} a_{r+1}+\cdots+a_{0}+a_{1} x+\cdots+$ $a_{n} x^{n} \in R\left[x, x^{-1} ; \alpha\right]$. So there exists idempotents $e_{i} \in R$ such that $r_{R}\left(a_{i}\right)=e_{i} R$ for $i=r, \ldots, n$. Let $e=e_{r} e_{r+1} \cdots e_{n}$. Since R is abelian, $e^{2}=e \in R$. We show that $r_{R\left[x, x^{-1} ; \alpha\right]}(f)=e R\left[x, x^{-1} ; \alpha\right]$. Since $R\left[x, x^{-1} ; \alpha\right]$ is abelian by Corollary 9, and by Proposition 4 we have $\alpha(e)=e$ for each idempotent $e \in R$, whence $f e R\left[x, x^{-1} ; \alpha\right]=0$. Thus $e R\left[x, x^{-1} ; \alpha\right] \subseteq r_{R\left[x, x^{-1} ; \alpha\right]}(f)$. Now suppose that $g=b_{k} x^{k}+b_{k+1} x^{k+1}+\cdots+b_{0}+\cdots+b_{m} x^{m} \in r_{R\left[x, x^{-1} ; \alpha\right]}(f)$. Then we have $f g=0$. Since R is α-rigid, by the same argument as in the proof of Theorem 12, we deduce that $a_{i} b_{j}=0$ for all $r \leq i \leq n$ and $k \leq j \leq m$. Thus for each $k \leq j \leq m, b_{j} \in r_{R}\left(a_{i}\right)$ for all $r \leq i \leq n$. Hence $b_{j}=e b_{j}$ for all $k \leq j \leq m$. Thus $e R\left[x, x^{-1} ; \alpha\right] \supseteq r_{R\left[x, x^{-1} ; \alpha\right]}(f)$. Therefore $e R\left[x, x^{-1} ; \alpha\right]=r_{R\left[x, x^{-1} ; \alpha\right]}(f)$. The converse is similar to the proof of Theorem 12.

Corollary 16. If R is an Armendariz ring, then R is a p.p.-ring if and only if the Laurent polynomial ring $R\left[x, x^{-1}\right]$ is a p.p.-ring.

Corollary 17. If R is a reduced ring, then R is a p.p.-ring if and only if the Laurent polynomial ring $R\left[x, x^{-1}\right]$ is a p.p.-ring.

4. Some extensions of α-skew-Armendariz rings

Let R be a ring and let

$$
T(R, n):=\left\{\left.\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \cdots & a_{n} \\
0 & a_{1} & a_{2} & \cdots & a_{n-1} \\
0 & 0 & a_{1} & \cdots & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{1}
\end{array}\right) \right\rvert\, a_{i} \in R\right\}
$$

with $n \geq 2$. Then $T(R, n)$ is a subring of the triangular matrix ring $T_{n}(R)$. We can denote elements of $T(R, n)$ by $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. In the case $n=2$ it is the trivial extension of R, and is denoted by $T(R, R)$. For an endomorphism α of R, the natural extension $\bar{\alpha}: T(R, n) \rightarrow T(R, n)$ defined by $\bar{\alpha}\left(\left(a_{i}\right)\right)=\left(\alpha\left(a_{i}\right)\right)$ is an endomorphism of $T(R, n)$.

Theorem 18. Let R be a ring and α a monomorphism of R. Then the following are equivalent:
(1) R is α-rigid.
(2) For some $n \geq 3, T(R, n)$ is an α-skew Armendariz ring.
(3) For each $n, T(R, n)$ is an α-skew Armendariz ring.

Proof. (1) \Rightarrow (3). Suppose that R is α-rigid. Now observe that $T(R, n)[x ; \alpha] \cong$ $T(R[x ; \alpha], n)$, given by $A x^{j} \rightarrow\left(a_{1} x^{j}, a_{2} x^{j}, \ldots, a_{n} x^{j}\right)$, where $A=\left(a_{1}, a_{2}, \ldots\right.$, $\left.a_{n}\right)$. Assume that $f g=0$ for $f, g \in T(R, n)[x ; \alpha]$ with $f(x)=A_{0}+A_{1} x+$ $\cdots+A_{t} x^{t}$ and $g(x)=B_{0}+\cdots+B_{m} x^{m}$ with $A_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$ and $B_{j}=\left(b_{j 1}, b_{j 2}, \ldots, b_{j n}\right)$. Then using the above isomorphism we have for each $0 \leq i \leq n, 0 \leq j \leq n-i+1, f_{i} g_{j}=0$ with $f_{i}(x)=a_{0 i}+a_{1 i} x+\cdots+a_{t i} x^{t}$ and $g_{j}=b_{0 j}+\cdots+b_{m j} x^{m} \in R[x ; \alpha]$. Since R is α-rigid, by Theorem $2, a_{0 i} b_{s j}=0$, for each $0 \leq i \leq t, 0 \leq j \leq t-i+1$ and each s. Thus $A_{0} B_{s}=0$ for each $0 \leq s \leq m$. $(2) \Rightarrow(1)$. Assume that for some $n \geq 3, T(R, n)$ is an α-skew Armendariz ring. To show that R is α-rigid, let $r \in R$ and $r \alpha(r)=0$. Consider $h(x)=(0,0,1,0, \ldots, 0)-(0, \alpha(r), 0, \ldots, 0) x$ and $k(x)=(0,0, \ldots, 0,1,0)+$ $(0,0, \ldots, \alpha(r), 0,0) x$ in the ring $T(R, n)\left[x, x^{-1} ; \alpha\right]$. We have $h(x) k(x)=0$ and $T(R, n)$ is an α-skew Armendariz ring, so $(0,0,1,0, \ldots, 0)(0,0, \ldots, \alpha(r), 0,0)=$ 0 . Hence $\alpha(r)=0$ and $r=0$, since α is a monomorphism.

Corollary 19. Let R be a ring and α a monomorphism of R. Then the following are equivalent:
(i) R is α-rigid.
(ii) For some $n \geq 3, R[x] /\left\langle x^{n}\right\rangle$ is an α-skew Armendariz ring.
(iii) For each $n, R[x] /\left\langle x^{n}\right\rangle$ is an α-skew Armendariz ring, where $\left\langle x^{n}\right\rangle$ is the ideal of $R[x]$ generated by x^{n}.

Proof. Observe that $T(R, n) \cong R[x] /\left\langle x^{n}\right\rangle$, for each positive integer n.

As a corollary of Theorem 18, we see that the trivial extension $T(R, R)$ is an α-skew Armendariz ring for every α-rigid ring R.

If R is any of the following examples of α-rigid rings, then the trivial extension $T(R, R)$ is a non reduced α-skew Armendariz ring:

Examples 20. (i) Let D be a domain and $R=D\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring over D, with indeterminates x_{1}, \ldots, x_{n}. Let α be an endomorphism on R given by $\alpha\left(x_{i}\right)=x_{i+1}$ for each $1 \leq i \leq n-1$ and $\alpha\left(x_{n}\right)=x_{1}$. Then R is an α-rigid ring.
(ii) Let D be a domain and $R=D\left[x_{1}, x_{2}, \ldots\right]$ the polynomial ring over D, with indeterminates x_{1}, x_{2}, \ldots Let α be an endomorphism on R given by $\alpha\left(x_{i}\right)=x_{i+1}$ for each $i \geq 1$. Then R is an α-rigid ring.

Examples 21. Let R be a domain and α an endomorphism on the polynomial ring $R[x]$ given by $\alpha(f(x))=f(0)$. Then $R[x]$ is a non-rigid α-skew Armendariz ring.

Examples 22. Let S be a right Ore domain and K its ring of fractions. Let

$$
R=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a \in S, b \in K\right\} .
$$

For each non-zero element $c \in S$ consider the endomorphism $\alpha_{c}: R \rightarrow R$ given by

$$
\alpha_{c}\left(\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right)\right)=\left(\begin{array}{cc}
a & b c^{-1} \\
0 & a
\end{array}\right) .
$$

Then R is an α-skew Armendariz ring. To see this, let $p=A_{0}+A_{1} x+\cdots+A_{n} x^{n}$ and $q=B_{0}+\cdots+B_{m} x^{m} \in R[x ; \alpha]$, with $p q=0$,

$$
A_{i}=\left(\begin{array}{cc}
a_{i} & b_{i} \\
0 & a_{i}
\end{array}\right) \text { and } B_{j}=\left(\begin{array}{cc}
e_{j} & f_{j} \\
0 & e_{j}
\end{array}\right) .
$$

If $A_{0}=0$, so $A_{0} B_{j}=0$ for each $0 \leq j \leq m$. If $a_{0} \neq 0$, then since $A_{0} B_{0}=0$, we have $a_{0} e_{0}=0$, and so $e_{0}=0$. Also $a_{0} f_{0}+b_{0} e_{0}=0$ implies $f_{0}=0$. Hence $B_{0}=0$. By a similar argument since $A_{0} B_{1}=0$, we have $B_{1}=0$. Therefore $A_{0} B_{j}=0$ for each $0 \leq j \leq m$. Now if $a_{0}=0$, and for each $j, e_{j}=0$, then $A_{0} B_{j}=0$ for each j. Thus assume that for some $t, e_{t} \neq 0$ and that $e_{0}=e_{1}=\cdots=e_{t-1}=0$. Then we have $\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)\left(e_{t} x^{t}+\right.$ $\left.e_{t+1} x^{t+1}+\cdots+e_{m} x^{m}\right)=0$, since $p q=0$. Thus we have $a_{0} e_{t+1}+a_{1} e_{t}=$ 0 . So $a_{1} e_{t}=0$ and hence $a_{1}=0$. By the same method we can see that $a_{i}=0$ for each i. Now we have $A_{0} B_{t}+A_{1} \alpha\left(B_{t-1}\right)+\cdots+A_{t} \alpha^{t}\left(B_{0}\right)=0$. So $a_{0} f_{t}+b_{0} e_{t}+a_{1}\left(f_{t-1} / c\right)+b_{1} e_{t-1}+\cdots+a_{t}\left(f_{0} / c^{t}\right)+b_{t} e_{0}=0$. Thus $b_{0}=0$ and $A_{0}=0$. Hence $A_{0} B j=0$ for each j. Therefore R is an α-skew Armendariz ring.

Acknowledgment. The authors would like to thank the referee for his/her helpful suggestions.

References

[1] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272.
[2] E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.
[3] E. P. Armendariz, H. K. Koo, and J. K. Park, Isomorphic Ore extensions, Comm. Algebra 15 (1987), no. 12, 2633-2652.
[4] G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2001), no. 2, 639-660.
[5] , Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), no. 1, 25-42.
[6] , On polynomial extensions of principally quasi-Baer rings, Kyungpook Math. J. 40 (2000), no. 2, 247-253.
[7] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207-224.
[8] Y. Hirano, On isomorphisms between Ore extensions, Preprint.
[9] , On the uniqueness of rings of coefficients in skew polynomial rings, Publ. Math. Debrecen 54 (1999), no. 3-4, 489-495.
[10] C. Y. Hong, N. K. Kim, and T. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215-226.
[11] , On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103-122.
[12] C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761.
[13] D. A. Jordan, Bijective extensions of injective ring endomorphisms, J. London Math. Soc. (2) 25 (1982), no. 3, 435-448.
[14] I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
[15] N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488.
[16] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
[17] T. K. Lee and T. L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593.
[18] J. Matczuk, A characterization of σ-rigid rings, Comm. Algebra 32 (2004), no. 11, 4333-4336.
[19] A. Moussavi and E. Hashemi, Semiprime skew polynomial rings, Sci. Math. Jpn. 64 (2006), no. 1, 91-95.
[20] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17.

Alireza R. NasR-Isfahani
Department of Mathematics Tarbiat Modares University 14115-170, Tehran, Iran E-mail address: a_nasr_isfahani@yahoo.com

Ahmad Moussavi
Department of Mathematics
Tarbiat Modares University
14115-170, Tehran, Iran
E-mail address: moussavi.a@gmail.com

[^0]: Received September 10, 2006.
 2000 Mathematics Subject Classification. 16S34, 16S36.
 Key words and phrases. skew Laurent polynomial rings, Baer rings, p.p.-rings, α-rigid rings, skew-Armendariz rings.

