• Title/Summary/Keyword: extensions

Search Result 843, Processing Time 0.027 seconds

REVERSIBILITY OVER PRIME RADICALS

  • Jung, Da Woon;Lee, Yang;Sung, Hyo Jin
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.279-288
    • /
    • 2014
  • The studies of reversible and 2-primal rings have done important roles in noncommutative ring theory. We in this note introduce the concept of quasi-reversible-over-prime-radical (simply, QRPR) as a generalization of the 2-primal ring property. A ring is called QRPR if ab = 0 for $a,b{\in}R$ implies that ab is contained in the prime radical. In this note we study the structure of QRPR rings and examine the QRPR property of several kinds of ring extensions which have roles in noncommutative ring theory.

Two Pieces Extension of the Bass Diffusion Model (Bass 확산모형의 이분 확장)

  • Hong, Jung-Sik;Eom, Seok-Jun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.15-26
    • /
    • 2009
  • Bass diffusion model have played a central role in studying the diffusion of the new products since 1969, the year of publication of Bass model. Almost 750 publications based on the Bass diffusion model have explored extensions and applications. Extension models can be divided into two types. One is the model containing marketing-mix variables and the other is the model containing additional parameters. This paper presents another extension model of the latter type. Our model allows the time varying coefficients of innovation and imitation. Two pieces approximation of time varying coefficients is introduced and it's parameters are estimated based on NLS(Non-Linear Mean Square) method. Empirical studies are performed and the results show that our model is superior to the basic Bass model and the NUI(Non-Uniform Influence) model which is the well-known extension of the Bass model. The model developed in this paper is, also, transformed into the Bass model with the ready potential adopters in order to enhance the descriptive power.

EVALUATION SUBGROUPS AND CELLULAR EXTENSIONS OF CW-COMPLEXES

  • Lee, Kee-Young;Woo, Moo-Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.45-56
    • /
    • 1995
  • D. H. Gottlieb [1, 2] studied the subgroups $G_n(X)$ of homotopy groups $\pi_n(X)$. In [5, 7, 10], the authors introduced subgroups $G_n(X, A)$ and $G_n^{Rel}(X, A) of \pi_n(X)$ and $\pi_n(X, A)$ respectively and showed that they fit together into a sequence $$ \cdots \to G_n(A) \longrightarrow^{i_*} G_n(X, A) \longrightarrow^{j_*} G_n^{Rel}(X, A) \longrightarrow^\partial $$ $$ \cdots \to G_1^{Rel}(X, A) \to G_0(A) \ to G_0(X, A) $$ where $i_*, j_*$ and \partial$ are restrictions of the usual homomorphisms of the homotopy sequence $$ \cdot \to^\partial \pi_n(A) \longrightarrow^{i_*} \pi_n(X) \longrightarrow^{j_*} \pi_n(X, A) \to \cdot \to \pi_0(A) \to \pi_0(X) $$.

  • PDF

ON RELATIVE CHINESE REMAINDER THEOREM

  • Park, Young-Soo;Rim, Seog-Hoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.93-97
    • /
    • 1994
  • Previously T.Porter [3] has given a relative Chinese Remainder Theorem under the hypothesis that given ring R has at least one .tau.-closed maximal ideal (by his notation Ma $x_{\tau}$(R).neq..phi.). In this short paper we drop his overall hypothesis that Ma $x_{\tau}$(R).neq..phi. and give the proof and some related results with this Theorem. In this paper R will always denote a commutative ring with identity element and all modules will be unitary left R-modules unless otherwise specified. Let .tau. be a given hereditarty torsion theory for left R-module category R-Mod. The class of all .tau.-torsion left R-modules, dented by J is closed under homomorphic images, submodules, direct sums and extensions. And the class of all .tau.-torsionfree left R-modules, denoted by F, is closed under taking submodules, injective hulls, direct products, and isomorphic copies ([2], Proposition 1.7 and 1.10).

  • PDF

THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS

  • Jang, Lee-Chae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1181-1188
    • /
    • 2010
  • q-Volkenborn integrals ([8]) and fermionic invariant q-integrals ([12]) are introduced by T. Kim. By using these integrals, Euler q-zeta functions are introduced by T. Kim ([18]). Then, by using the Euler q-zeta functions, S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin ([25]) studied q-Genocchi zeta functions. And also Y. H. Kim, W. Kim, and C. S. Ryoo ([7]) investigated twisted q-zeta functions and their applications. In this paper, we consider the q-analogue of twisted Lerch type Euler zeta functions defined by $${\varsigma}E,q,\varepsilon(s)=[2]q \sum\limits_{n=0}^\infty\frac{(-1)^n\epsilon^nq^{sn}}{[n]_q}$$ where 0 < q < 1, $\mathfrak{R}$(s) > 1, $\varepsilon{\in}T_p$, which are compared with Euler q-zeta functions in the reference ([18]). Furthermore, we give the q-extensions of the above twisted Lerch type Euler zeta functions at negative integers which interpolate twisted q-Euler polynomials.

EXTENSIONS OF STRONGLY π-REGULAR RINGS

  • Chen, Huanyin;Kose, Handan;Kurtulmaz, Yosum
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.555-565
    • /
    • 2014
  • An ideal I of a ring R is strongly ${\pi}$-regular if for any $x{\in}I$ there exist $n{\in}\mathbb{N}$ and $y{\in}I$ such that $x^n=x^{n+1}y$. We prove that every strongly ${\pi}$-regular ideal of a ring is a B-ideal. An ideal I is periodic provided that for any $x{\in}I$ there exist two distinct m, $n{\in}\mathbb{N}$ such that $x^m=x^n$. Furthermore, we prove that an ideal I of a ring R is periodic if and only if I is strongly ${\pi}$-regular and for any $u{\in}U(I)$, $u^{-1}{\in}\mathbb{Z}[u]$.

Discrete approaches in evolution strategies based optimum design of steel frames

  • Hasancebi, O.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.191-210
    • /
    • 2007
  • The three different approaches (reformulations) of evolution strategies (ESs) have been proposed in the literature as extensions of the technique for solving discrete problems. This study implements an extensive research on application, evaluation and comparison of them in discrete optimum design of steel frames. A unified formulation is first developed to explain these approaches, so that differences and similarities between their inherent search mechanisms can clearly be identified. Two examples from practical design of steel frames are studied next to measure their performances in locating the optimum. Extensive numerical experimentations are performed in both examples to facilitate a statistical analysis of their convergence characteristics. The results obtained are presented in the histograms demonstrating the distribution of the best designs located by each approach. In addition, an average improvement of the best design during the course of evolution is plotted in each case to compare their relative convergence rates.

A NON-COMPACT GENERALIZATION OF HORVATH'S INTERSECTION THEOREM$^*$

  • Kim, Won-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 1995
  • Ky Fan's minimax inequality is an important tool in nonlinear functional analysis and its applications, e.g. game theory and economic theory. Since Fan gave his minimax inequality in [2], various extensions of this interesting result have been obtained (see [4,11] and the references therein). Using Fan's minimax inequality, Ha [6] obtained a non-compact version of Sion's minimax theorem in topological vector spaces, and next Geraghty-Lin [3], Granas-Liu [4], Shih-Tan [11], Simons [12], Lin-Quan [10], Park-Bae-Kang [17], Bae-Kim-Tan [1] further generalize Fan's minimax theorem in more general settings. In [9], using the concept of submaximum, Komiya proved a topological minimax theorem which also generalized Sion's minimax theorem and another minimax theorem of Ha in [5] without using linear structures. And next Lin-Quan [10] further generalizes his result to two function versions and non-compact topological settings.

  • PDF

IMAGINARY BICYCLIC FUNCTION FIELDS WITH THE REAL CYCLIC SUBFIELD OF CLASS NUMBER ONE

  • Jung, Hwan-Yup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.375-384
    • /
    • 2008
  • Let $k={\mathbb{F}}_q(T)$ and ${\mathbb{A}}={\mathbb{F}}_q[T]$. Fix a prime divisor ${\ell}$ q-1. In this paper, we consider a ${\ell}$-cyclic real function field $k(\sqrt[{\ell}]P)$ as a subfield of the imaginary bicyclic function field K = $k(\sqrt[{\ell}]P,\;(\sqrt[{\ell}]{-Q})$, which is a composite field of $k(\sqrt[{\ell}]P)$ wit a ${\ell}$-cyclic totally imaginary function field $k(\sqrt[{\ell}]{-Q})$ of class number one. und give various conditions for the class number of $k(\sqrt[{\ell}]{P})$ to be one by using invariants of the relatively cyclic unramified extensions $K/F_i$ over ${\ell}$-cyclic totally imaginary function field $F_i=k(\sqrt[{\ell}]{-P^iQ})$ for $1{\leq}i{\leq}{\ell}-1$.

MCCOY CONDITION ON IDEALS OF COEFFICIENTS

  • Cheon, Jeoung Soo;Huh, Chan;Kwak, Tai Keun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1887-1903
    • /
    • 2013
  • We continue the study of McCoy condition to analyze zero-dividing polynomials for the constant annihilators in the ideals generated by the coefficients. In the process we introduce the concept of ideal-${\pi}$-McCoy rings, extending known results related to McCoy condition. It is shown that the class of ideal-${\pi}$-McCoy rings contains both strongly McCoy rings whose non-regular polynomials are nilpotent and 2-primal rings. We also investigate relations between the ideal-${\pi}$-McCoy property and other standard ring theoretic properties. Moreover we extend the class of ideal-${\pi}$-McCoy rings by examining various sorts of ordinary ring extensions.