• Title/Summary/Keyword: exponential type functional equation

Search Result 15, Processing Time 0.022 seconds

APPROXIMATE PEXIDERIZED EXPONENTIAL TYPE FUNCTIONS

  • Lee, Young-Whan
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.193-198
    • /
    • 2012
  • We show that every unbounded approximate Pexiderized exponential type function has the exponential type. That is, we obtain the superstability of the Pexiderized exponential type functional equation $$f(x+y)=e(x,y)g(x)h(y)$$. From this result, we have the superstability of the exponential functional equation $$f(x+y)=f(x)f(y)$$.

SUPERSTABILITY OF A GENERALIZED EXPONENTIAL FUNCTIONAL EQUATION OF PEXIDER TYPE

  • Lee, Young-Whan
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.357-369
    • /
    • 2008
  • We obtain the superstability of a generalized exponential functional equation f(x+y)=E(x,y)g(x)f(y) and investigate the stability in the sense of R. Ger [4] of this equation in the following setting: $$|\frac{f(x+y)}{(E(x,y)g(x)f(y)}-1|{\leq}{\varphi}(x,y)$$ where E(x, y) is a pseudo exponential function. From these results, we have superstabilities of exponential functional equation and Cauchy's gamma-beta functional equation.

SOLUTION AND STABILITY OF AN EXPONENTIAL TYPE FUNCTIONAL EQUATION

  • Lee, Young-Whan;Kim, Gwang-Hui;Lee, Jae-Ha
    • The Pure and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.169-178
    • /
    • 2008
  • In this paper we generalize the superstability of the exponential functional equation proved by J. Baker et al. [2], that is, we solve an exponential type functional equation $$f(x+y)\;=\;a^{xy}f(x)f(y)$$ and obtain the superstability of this equation. Also we generalize the stability of the exponential type equation in the spirt of R. Ger[4] of the following setting $$|{\frac{f(x\;+\;y)}{{a^{xy}f(x)f(y)}}}\;-\;1|\;{\leq}\;{\delta}.$$

  • PDF

ON THE SUPERSTABILITY OF SOME PEXIDER TYPE FUNCTIONAL EQUATION II

  • Kim, Gwang-Hui
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.397-411
    • /
    • 2010
  • In this paper, we will investigate the superstability for the sine functional equation from the following Pexider type functional equation: $f(x+y)-g(x-y)={\lambda}{\cdot}h(x)k(y)$ ${\lambda}$: constant, which can be considered an exponential type functional equation, the mixed functional equation of the trigonometric function, the mixed functional equation of the hyperbolic function, and the Jensen type equation.

SUPERSTABILITY OF THE GENERALIZED PEXIDER TYPE EXPONENTIAL EQUATION IN ABELIAN GROUP

  • Kim, Gwang Hui
    • Korean Journal of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.213-223
    • /
    • 2012
  • In this paper, we will prove the superstability of the following generalized Pexider type exponential equation $${f(x+y)}^m=g(x)h(y)$$, where $f,g,h\;:\;G{\rightarrow}\mathbb{R}$ are unknown mappings and $m$ is a fixed positive integer. Here G is an Abelian group (G, +), and $\mathbb{R}$ the set of real numbers. Also we will extend the obtained results to the Banach algebra. The obtained results are generalizations of P. G$\check{a}$vruta's result in 1994 and G. H. Kim's results in 2011.

ENERGY DECAY RATE FOR THE KELVIN-VOIGT TYPE WAVE EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING AND ACOUSTIC BOUNDARY

  • Kang, Yong Han
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.355-364
    • /
    • 2016
  • In this paper, we study exponential stabilization of the vibrations of the Kelvin-Voigt type wave equation with Balakrishnan-Taylor damping and acoustic boundary in a bounded domain in $R^n$. To stabilize the systems, we incorporate separately, the internal material damping in the model as like Kang [3]. Energy decay rate are obtained by the exponential stability of solutions by using multiplier technique.

ENERGY DECAY RATES FOR THE KELVIN-VOIGT TYPE WAVE EQUATION WITH ACOUSTIC BOUNDARY

  • Seo, Young-Il;Kang, Yong-Han
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.85-91
    • /
    • 2012
  • In this paper, we study uniform exponential stabilization of the vibrations of the Kelvin-Voigt type wave equation with acoustic boundary in a bounded domain in $R^n$. To stabilize the systems, we incorporate separately, the internal material damping in the model as like Gannesh C. Gorain [1]. Energy decay rates are obtained by the exponential stability of solutions by using multiplier technique.

ENERGY DECAY RATE FOR THE KIRCHHOFF TYPE WAVE EQUATION WITH ACOUSTIC BOUNDARY

  • Kang, Yong-Han
    • East Asian mathematical journal
    • /
    • v.28 no.3
    • /
    • pp.339-345
    • /
    • 2012
  • In this paper, we study uniform exponential stabilization of the vibrations of the Kirchho type wave equation with acoustic boundary in a bounded domain in $R^n$. To stabilize the system, we incorporate separately, the passive viscous damping in the model as like Gannesh C. Gorain [1]. Energy decay rate is obtained by the exponential stability of solutions by using multiplier technique.

ENERGY DECAY RATES FOR THE KIRCHHOFF TYPE WAVE EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING AND ACOUSTIC BOUNDARY

  • Kang, Yong Han
    • East Asian mathematical journal
    • /
    • v.30 no.3
    • /
    • pp.249-258
    • /
    • 2014
  • In this paper, we study uniform exponential stabilization of the vibrations of the Kirchhoff type wave equation with Balakrishnan-Taylor damping and acoustic boundary in a bounded domain in $R^n$. To stabilize the systems, we incorporate separately, the passive viscous damping in the model as like Kang[14]. Energy decay rates are obtained by the uniform exponential stability of solutions by using multiplier technique.