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PEXIDER-EXPONENTIAL EQUATIONS IN THE SPACE
OF DISTRIBUTIONS AND THEIR APPLICATIONS

SEOK RHO

Abstract. Generalizing the results in 7] that considers several
functional equations in the spaces of the Schwartz tempered distri-
butions and the Fourier hyperfunctions we consider Pexider type

functional equations in the space of distributions.

1. Introduction

In the previous paper(7], several functional equations have been con-
sidered in the space S'(R™) of tempered distributions that is the dual
space of the Schwartz space S(R™) of infinitely differentiable functions
of polynomial decay and the space F’'(R™) of Fourier hyperfunctions
that is the dual space of the Sato space F(R™) of analytic functions of
exponential decay. We refer to [4, 5, 6, 7, 8, 9, 10, 11] for the spaces of
tempered distributions and Fourier hyperfunctions.

In this paper, generalizing the results in [7] and following a similar
approach as in [5, 6] we consider the Pexider equation and Pexider-

exponential equation

(1.1) flz+y) —g(z) — h(y) =0,
(1.2) flz+y)—g(z) h(y) =0,
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in the space D'(R™) of Schwartz distributions. As special cases of the
equations (1.1) and (1.2) we also consider the Cauchy equations, expo-

nential equation, Jensen equation and Jensen-Pexider equation:

(13) f+y) = 1@) - f() =0,
(1) fla+y) = 1(2) f) = 0,

(15) 2£(53Y) - f(@) - () =0,
(1.6) 2£(22Y) — g(a) - h(y) =0

Here all the functions f,g,h in the equations (1.1) ~ (1.6) are re-
garded as functions from R"™ to C and all the equations hold for all
(z,y) in a subset E of R?™ with m(E*°) = 0.

As in the previous papers|2, 4, 5, 6, 7] we reformulate the functional
equations (1.1) ~ (1.6) in the space D’'(R™) of Schwartz distributions as

follows:
(1.1) uoA—voP, —wo Py =0,
(1.2") uoA-v®@w=0,
(1.3%) uoA—uoP—uoPy =0,
(1.4%) uoA—-u®u=0,
A
(1.5%) 2uo§—uoP1—uoP2=0,
, A
(1.6") 2uo§—voP1—woP2=0,

where A(z,y) = z +y, B(z,y) = z -y, Pi(z,y) = z, Py(z,y) =
Y, z,y € R", and uo A, uo B,uo P, and u o P, are the pullbacks
of u in D'(R™) by A, B, P, and P,, respectively, and ® denotes the
tensor product of generalized functions[9, 10, 11].

As a matter of fact a more general type of functional equation than
the above equations have been studied in the space of distribution in
[3] for the case n = 1. However, in this paper, we follow some different

approach from the methods in [3].
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As results, we prove that all the solutions u, v and w in D’(R"™) of the
equations (1.1), (1.2"), (1.5") and (1.6") are linear functions and that of
the equations (1.2') and (1.4") are exponential functions. Also as simple
consequences of the results we obtain that all the measurable solutions
f, g and h of the equations (1.1), (1.2), (1.5) and (1.6) are linear functions
almost everywhere and that of the equations (1.2), (1.4) are exponential
functions almost everywhere, and we obtain the well known fact that
if, in particular, the equations (1.1) ~ (1.6) hold for all z,y € R™ the

solutions are linear functions or exponential functions.

2. Main theorems

We briefly introduce the space D'(R™) of distributions. Here we use
the notations, || = a1+ 4+ an, al = aq! -, x| = /22 + -+ 12
and 9% = O --- 9%, for x = (z1,... ,2,) ER™, o = (a1,...,05) €

G, where Ny is the set of non-negative integers and 0; = %.
Also we denote by C°(R™) the set of all infinitely differentiable func-

tions on R™ with compact supports.

DEFINITION 2.1. A distribution u is a linear form on CZ°(R™) such
that for every compact set K C R™ there exist constants C' > 0 and
k € Ny such that

(u,0)| < C ) sup|9%p|

lal<k
for all ¢ € C2°(R™) with supports contained in K. The set of all distri-
butions is denoted by D'(R™).

We employ the function ¥(z) on R™,
Aexp(—(1—|z]*)™h), |z| <1
P(z) =
0, lz| > 1,

where
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It is easy to see that ¥(z) an infinitely differentiable function with sup-
port {z : |z|] < 1}. Let u € D'(R™) and 9 (z) := t™"¢(z/t), t > 0.
Then for each t > 0, (u * ¥:){z) = (uy, Ye(x — y)) is a smooth function
in R™ and (u *9¢)(z) — u as t — 0% in the sense of distributions, that
is, for every p € C°(R"),

We first consider the Pexider equation (1.17).
THEOREM 2.2. Every solution u, v, w € D’'(R™) of the Pexider equa-

tion (1.1") has the form

(1.1,/) uza-:v-i-cl-f-cQ,
v=a-z+cy,

w=a- T+ cs.

for some a € C™ and ¢;,¢c3 € C.

Proof. Convolving v (x)1s(y) in each side of (1.1’) we have

(2.1) (w9 hs)(z +y) — (v e)(z) — (wxYs)(y) =0

forz, y e R™ ¢t,s > 0.
From (2.1) it is easy to see that for each x € R™,

g(z) := limsup(v * ¥ )(x),

t—0+
h(z) := lim sup(w * ¢ )(z)
t—0+
exist. In (2.1), lettingy = 0 and s = s, — 0% so that (wx;, )(0) — h(0)

we have

(2.2) (ux 9he)(2) = (v * ) (z) — h(0) =0
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for all z € R™. Similarly we have

(2.3) (u9e)(z) — (w*Pe)(x) — g(0) = 0

for all z € R™. From (2.1), (2.2) and (2.3) we have

(2.4) (u* vy xhs)(x +y) — (w*e)(@) — (u*vs)(y) + 9(0) + ~(0) = 0,

for z, y € R™, ¢,5 > 0. From (2.4) it is easy to see that for each z € R",

f(z) := limsup(u * ¥ )(x)

t—0+

exists and f(0) = g(0) + h(0). Letting y = 0 in (2.4) we have

(2:5)  (ux b xs)(z) — (wx9e)(x) — (u¥s)(0) + g(0) + h(0) = 0

for all z € R™. In (2.5), fix z and let t = t, — 0% so that (uxy,, )(z) —

f(z) as n — oo to get

(2.6) (ux 1) (z) = f(2) = (u* ) (0) + g(0) + h(0) = 0

for all x € R™.
From the inequality (2.4), (2.5), (2.6) we have

(2.7) flz+y) = f(z) - fly) + f(0) =0

for all z,y € R™ Since f is a smooth function in view of (2.6) it
follows that f(r) =a -z + f(0) . Letting s = s, — 0% in (2.6) so that
(ux*1s, )(0) — f(0) we have

(2.8) u=a-z+ f(0),

for some a € C™. Consequently we have from (2.2) and (2.3)

(2.9) v=a-z+ g(0),
(2.10) w=a-z+ h(0).
This completes the proof. |

As direct consequences of the above result we have the followings.
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COROLLARY 2.3. Every solution u € D'(R™) of the Cauchy equation
(1.3') has the form

(1.3") u=a-z, acC".

COROLLARY 2.4. Every solution u € D'(R™) of the Jensen equation
(1.5') has the form

(1.5") u=a-z+c, a€C ceC.

COROLLARY 2.5. Every solution u,v,w € D'(R™) of the Jensen-
Pexider equation (1.6") has the form

(1.6") u=a-z+c +ca,
v=a-z+ 2c,

w=a- T+ 2cs.

for some a € C"™ and ¢1,¢c0 € C.
Now we consider the Pexider-exponential equation (1.2).
THEOREM 2.6. Every nontrivial solution u, v, w € D'(R™) of the

equation (1.2') has the form

(1.2") u = C1C; exp(c- ),
v = C exp(c- x),
w = C exp(c- z),
where c € C" and C4, Cy € C.
Proof. We consider the nontrivial case that u # 0, v # 0 and w # 0.

Convolving ¥:(z)1s(y) in each side of (1.2') we have

(2.11) (ux e Ys) (@ +y) — (v Pe)(z)(w * 9s)(y) =0
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for all z, y € R™, t,5 > 0. It follows from (2.11) that both the limits

g(z) := limsup(v * ¥ )(z),

t—0t

h(y) := limsup(w * 15)(y),

s—0t
exist. In (2.31), fix = and let ¢t = t, — 0% so that (v * 1, )(z) — g(x)

as n — o0o. Then we have

(2.12) (u*s)(z +y) — g(z) (w*¥s)(y) = 0.

Letting y = 0 and s = s, — 0 so that (w x¢,,)(0) — h(0) as n — oo in
(2.12) we have

(2.13) u — h(0) g(z) = 0.
Now it follows from (2.12) that
(w*15)(0)[G(z + y) — G(z)G(y)] = 0
for all z,y € R®, s > 0, where G(z) = g(0)*g(z). Since (w*v5)(0) #0

for some s > 0 we have
(2.14) Gz +y) - G(z)G(y) = 0.

Since G is a smooth function in view of (2.12) the solution of the expo-
nential equation (2.14) has the form

G(x) = exp(c- )
for some ¢ € C™. Thus it follows from (2.13)
u = g(0)h(0) exp(c- z).

Consequently, from (2.12) we have

w = h(0) exp(c - ).
Changing the roles of v and w we have

v = g(0)exp(c- x).
This completes the proof. d

As a direct consequence of the above result we have the following.
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COROLLARY 2.7. Every nontrivial solution u € D'(R™) of the expo-

nential equation (1.4') has the form

(1.4") u=-exp{c-z), ceC"

REMARK. Now we return to the classical equations (1.1)~(1.6). Note
that every locally integrable function f can be regarded as a distribution

via the equation

(f ) = / f@)p()dr, e CRR™),

Also it is easy to see that all the measurable solutions of the equations
(1.1)~(1.6) are locally integrable. Thus, as consequences of the above
results all the measurable solutions of the equations (1.1)~(1.6) are equal
to (1.1")~(1.6") almost everywhere, respectively. In particular, if the
equations (1.1)~(1.6) hold for all z,;y € R™ their solutions have the
forms (1.17)~(1.6") exactly. Indeed, for example, let f,g and h be a

solution of the equation
(2.15) fz+y)—g(z) —ny) =0, x,yeR™

Then f(z) =a-z+c1+ca9(z) =a-z+c1,h(z) =a -z +cy for all z
in a set ' with m(E°) = 0. Since for every z € R™ there exist r,yeFE

such that z = z + y we have
f(z)=g(x)+h(y) =a-z+c +cy.

It follows from (2.15)
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(z) —h(0)=a- -2+ ¢,
(2) —g9(0)=a-z+cy.
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The above simple argument works for the other equations.
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