• Title/Summary/Keyword: explosives

Search Result 1,142, Processing Time 0.032 seconds

Comparison of Fragmentation Performance of Two Different Blast Patterns (두 가지 발파 패턴의 파쇄 성과 비교)

  • Rai, Piyush;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.325-331
    • /
    • 2010
  • In the present research paper large scale blasting was conducted on two different firing patterns, namely, straight V type and skewed V type pattern on the same sandstone overburden bench with similar explosives. The post-blast fragmentation assessments were made by use of digital imaging technique. The total cycle time of 10 $m^3$ rope shovels was also recorded in the field. The results reveal improvements in the fragmentation and excavator performance results for the blasts fired on skewed V type pattern. The paper discusses the skewed V firing pattern and the reasons for its superior performance vis-$\grave{a}$-vis the straight V type pattern.

Study on the Thermal Property and Aging Prediction for Pressable Plastic Bonded Explosives through ARC(Heat-wait-search method) & Isothermal Conditions (ARC(Heat-wait-search method)와 Isothermal 조건을 이용한 압축형 복합화약의 열적 특성 및 노화 예측 연구)

  • Lee, Sojung;Kim, Seunghee;Kwon, Kuktae;Jeon, Yeongjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • The thermal property is one of the most important characteristics in the field of energetic materials. Because energy materials release decomposition heat, differential scanning calorimetry (DSC) is frequently used for thermal analysis. However, thermodynamic events, such as melting can interfere with DSC kinetic analysis. In this study, we use isothermal mode for DSC measurement to avoid thermodynamic issues. We also merge accelerating rate calorimetry(ARC) data with DSC data to obtain a robust prediction results for small scale samples and for large scale samples as well. For the thermal property prediction, advanced kinetics and technology solutions(AKTS) programs are used.

Recent Research Trends in Explosive Detection through Electrochemical Methods (전기화학적 방법을 통한 폭발물 검출 연구동향)

  • Lee, Wonjoo;Lee, Kiyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.399-407
    • /
    • 2019
  • The development of explosive detection technology in a security environment and fear of terrorism at homeland and abroad has been one of the most important issues. Moreover, research works on the explosive detection are highly required to achieve domestic production technology due to the implementation of aviation security performance certification system. Traditionally, explosives are detected by using classical chemical analyses. However, in the view of high sensitivity, rapid analysis, miniaturization and portability electrochemical methods are considered as promising. Most of electrochemical explosive detection technologies are developed in USA, China, Israel, etc. This review highlights the principle and research trend of electrochemical explosive detection technologies carried out overseas in addition to the research direction for future exploration.

Fabrication and Characterization of Highly Reactive Al/CuO Nano-composite using Graphene Oxide (산화그래핀을 적용한 고반응성 Al/CuO 나노복합재 제조 및 분석)

  • Lim, YeSeul
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.220-224
    • /
    • 2019
  • The aluminum (Al)/copper oxide (CuO) complex is known as the most promising material for thermite reactions, releasing a high heat and pressure through ignition or thermal heating. To improve the reaction rate and wettability for handling safety, nanosized primary particles are applied on Al/CuO composite for energetic materials in explosives or propellants. Herein, graphene oxide (GO) is adopted for the Al/CuO composites as the functional supporting materials, preventing a phase-separation between solvent and composites, leading to a significantly enhanced reactivity. The characterizations of Al/CuO decorated on GO(Al/CuO/GO) are performed through scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping analysis. Moreover, the functional bridging between Al/CuO and GO is suggested by identifying the chemical bonding with GO in X-ray photoelectron spectroscopy analysis. The reactivity of Al/CuO/GO composites is evaluated by comparing the maximum pressure and rate of the pressure increase of Al/CuO and Al/CuO/GO. The composites with a specific concentration of GO (10 wt%) demonstrate a well-dispersed mixture in hexane solution without phase separation.

Social Disaster Adaptation Experiences of Railroad Workers: Focused on the Iri Station Explosion of 1977 (철도종사자의 사회 재난 적응 경험: 1977년 이리역 폭발 사고를 중심으로)

  • Jung, Ho Gi;Yang, Ya Ki
    • Korean Journal of Occupational Health Nursing
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Purpose: The Iri station explosion that occurred in 1977 was a major social disaster in Korea, caused by a fire in a train equipped with explosives. The purpose of this study was to investigate the social disaster adaptation experiences of railroad workers. Methods: This study was based on qualitative research using phenomenological methodology. Participants were six railroad workers who experienced the Iri station explosion. Data were collected through in-depth interviews with individual workers from March to June, 2018. The data analysis method was based on Colaizzi's approach. Results: Experiences of railroad workers were categorized into 12 themes and the following 6 theme clusters: (1) Anxiety due to the extreme vibration and crash, (2) Terror regarding the horrible situation that one cannot face, (3) Anger about the cause of the explosion and a sense of relief about survival, (4) Confusion regarding different rumors, (5) Various efforts to return to daily life, and (6) Trauma that continues to exist. Conclusion: The findings of this study recommend that railroad organizations and managers should pay attention to enhance disaster preparedness and develop organizational disaster coping guidelines for members. The results of this study can help us to better understand the various aspects of the Iri station explosion of 1977.

Time dependent heat transfer of proliferation resistant plutonium

  • Lloyd, Cody;Hadimani, Ravi;Goddard, Braden
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.510-517
    • /
    • 2019
  • Increasing proliferation resistance of plutonium by way of increased $^{238}Pu$ content is of interest to the nuclear nonproliferation and international safeguards community. Considering the high alpha decay heat of $^{238}Pu$, increasing the isotopic fraction leads to a noticeably higher amount of heat generation within the plutonium. High heat generation is especially unattractive in the scenario of weaponization. Upon weaponization of the plutonium, the plutonium may generate enough heat to elevate the temperature in the high explosives to above its self-explosion temperature, rendering the weapon useless. In addition, elevated temperatures will cause thermal expansion in the components of a nuclear explosive device that may produce thermal stresses high enough to produce failure in the materials, reducing the effectiveness of the weapon. Understanding the technical limit of $^{238}Pu$ required to reduce the possibility of weaponization is key to reducing the current limit on safeguarded plutonium (greater than 80 at. % $^{238}Pu$). The plutonium vector evaluated in this study was found by simulating public information on Lightbridge's fuel design for pressurized water reactors. This study explores the temperature profile and maximum stress within a simple (first generation design) hypothetical nuclear explosive device of four unique scenarios over time. Analyzing the transient development of both the temperature profile and maximum stress not only establishes a technical limit on the $^{238}Pu$ content, but also establishes a time limit for which each scenario would be useable.

Investigation of blasting impact on limestone of varying quality using FEA

  • Dimitraki, Lamprini S.;Christaras, Basile G.;Arampelos, Nikolas D.
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.111-121
    • /
    • 2021
  • Large deformation and rapid pressure propagation take place inside the rock mass under the dynamic loads caused by the explosives, on quarry faces in order to extract aggregate material. The complexity of the science of rock blasting is due to a number of factors that affect the phenomenon. However, blasting engineering computations could be facilitated by innovative software algorithms in order to determine the results of the violent explosion, since field experiments are particularly difficult to be conducted. The present research focuses on the design of a Finite Element Analysis (FEA) code, for investigating in detail the behavior of limestone under the blasting effect of Ammonium Nitrate & Fuel Oil (ANFO). Specifically, the manuscript presents the FEA models and the relevant transient analysis results, simulating the blasting process for three types of limestone, ranging from poor to very good quality. The Finite Element code was developed by applying the Jones-Wilkins-Lee (JWL) equation of state to describe the thermodynamic state of ANFO and the pressure dependent Drucker-Prager failure criterion to define the limestone plasticity behavior, under blasting induced, high rate stress. A progressive damage model was also used in order to define the stiffness degradation and destruction of the material. This paper performs a comparative analysis and quantifies the phenomena regarding pressure, stress distribution and energy balance, for three types of limestone. The ultimate goal of this research is to provide an answer for a number of scientific questions, considering various phenomena taking place during the explosion event, using advanced computational tools.

Classification of Architectural Design Elements for the Risk Assessment of Bomb Attack of Multi-Use Buildings (다중이용시설의 폭발물 테러위험도 평가를 위한 건축계획요소 체계화 연구)

  • Kang, Kyung-Yeon;Park, So-Yeon;Heo, Hong;Lee, Kyung-Hoon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.7
    • /
    • pp.47-57
    • /
    • 2018
  • As a preliminary step for developing vulnerability assessment model of terrorism, this study aims to deduce and classify architectural design elements of multi-use buildings to protect them from terrorism using explosives. For these objectives, eleven domestic and foreign guidelines of anti-terrorism, including RVS which is one of the commonly used tools for assessing vulnerability to terrorism, were analyzed. As results, 2 scenarios of explosive attack, 4 layers of defense, and 58 architectural design elements for risk assessment of terrorism were deduced. And the design elements were categorized into 18 groups based on their purpose and function to take into account the supplementary effects among them. Then, the design measures applicable for each element were classified into several grades on the basis of its protection or risk level. Lastly, 11 multi-use buildings were selected and investigated how the elements suggested in this study were applied to them.

Prediction of Impact Fracture for Tungsten Alloy Using the Mohr-Coulomb Fracture Model (Mohr-Coulomb 파단모델을 이용한 텅스텐 합금의 충격 파단 예측)

  • Noh, D.;Fazily, Piemaan;Yu, K.;Lee, S.;Ko, D.K.;Sung, M.J.;Huh, H.;Yoon, J.W.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.16-21
    • /
    • 2021
  • A new concept of ammunition without the use of explosive gunpowder has been recently studied, which achieves performance equal to or higher than that of high explosives. Frangible Armor Piercing (FAP) is one of the concepts, which utilizes a tungsten alloy penetrator specialized for fragmentation. To investigate the fracture behavior of the tungsten alloy penetrator, Taylor impact tests were conducted at various impact velocities. Additionally, finite element analysis was performed to predict the fracture behavior of the tungsten alloy. Compression tests were also carried out at six strain rates for dynamic material properties and the dynamic hardening behavior was successfully predicted with the Lim-Huh model. Finally, the Mohr-Coulomb fracture model based on the mean stress was adopted to predict impact failure in Taylor impact simulation. The analysis predicts the deformation and fracture behaviors of the tungsten alloy successfully.

Development of Micro-Blast Type Scabbling Technology for Contaminated Concrete Structure in Nuclear Power Plant Decommissioning

  • Lee, Kyungho;Chung, Sewon;Park, Kihyun;Park, SeongHee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 2022
  • In decommissioning a nuclear power plant, numerous concrete structures need to be demolished and decontaminated. Although concrete decontamination technologies have been developed globally, concrete cutting remains problematic due to the secondary waste production and dispersion risk from concrete scabbling. To minimize workers' radiation exposure and secondary waste in dismantling and decontaminating concrete structures, the following conceptual designs were developed. A micro-blast type scabbling technology using explosive materials and a multi-dimensional contamination measurement and artificial intelligence (AI) mapping technology capable of identifying the contamination status of concrete surfaces. Trials revealed that this technology has several merits, including nuclide identification of more than 5 nuclides, radioactivity measurement capability of 0.1-107 Bq·g-1, 1.5 kg robot weight for easy handling, 10 cm robot self-running capability, 100% detonator performance, decontamination factor (DF) of 100 and 8,000 cm2·hr-1 decontamination speed, better than that of TWI (7,500 cm2·hr-1). Hence, the micro-blast type scabbling technology is a suitable method for concrete decontamination. As the Korean explosives industry is well developed and robot and mapping systems are supported by government research and development, this scabbling technology can efficiently aid the Korean decommissioning industry.