• Title/Summary/Keyword: explosion hazard

Search Result 157, Processing Time 0.02 seconds

A Study on Quantitative Risk Analysis & Model Application for Hydrogen Filling Center (수소충전시설에 대한 정량적 위험성 평가 및 모델적용에 관한 연구)

  • Shin, Jung-Soo;Byun, Hun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.87-101
    • /
    • 2012
  • In gas industries, the potential risks of serious accidents have been increased due to high technology application and process complexities. Especially, in case of gas-related accidents, the extent of demage is out of control since gas plants handle and produce combustible, flammable, explosive and toxic materials in large amounts. The characteristics of this kind of disaster is that accident frequency is low, while the impact of damage is high, extending to the neighboring residents, environment and related industries as well as employees involved. The hydrogen gases treated important things and it used the basic material of chemical plants and industries. Since 2000, this gas stood in the spotlight the substitution energy for reduction of the global warming in particular however it need to compress high pressure(more than 150 bar.g) and store by using the special cylinders due to their low molecular weight. And this gas led to many times the fire and explosion due to leak of it. To reduce these kinds of risks and accidents, it is necessary to improve the new safety management system through a risk management after technically evaluating potential hazards in this process. This study is to carry out the quantitative risk assesment for hydrogen filling plant which are very dangerous(fire and explosive) and using a basic materials of general industries. As a results of this risk assessment, identified the elements important for safety(EIS) and suggested the practical management tools and verified the reliability of this risk assessment model through case study of accident.

Problems on Pesticide Safe-Use and Their Counter-Measures (농약안전사용상의 문제점과 그 대책)

  • Han Ki-Hak
    • Korean journal of applied entomology
    • /
    • v.22 no.2 s.55
    • /
    • pp.138-146
    • /
    • 1983
  • With the increase of pesticide consumption, not only pesticide handling population would grow greater but also the chances to be exposed to the pesticides would be also increased. Thus, safe use and handling of the pesticides are becoming more important and serious in these days. The pesticides are well known to most pepole, however there are very limited number of persons who have correct understanding of chamicals. Intoxication cases caused by pesticides have been reported very rarely through the mess media, even they were lack of scientific evidences. In this paper, problems related to pesticide manufacture, transportation, storage, sprays, and residues and their countermeasures were discussed in connection with public health and enviromental aspects. Acute intoxication cases by pesticide handling might be caused accidently either through manufacture, marketing, transportation, or spraying. Safety aspects of workers in manufacturing plants include not only exposure to toxic chemicals, but also posibilities of of explosion and brought about by pesticides and their diluents. The problems of water pollution by waste chemicals from the manufacturing factories were discussed. Packing and loading methods of pesticides for transportation are considered in safety scheme and discussions are given in association with traffic accidents. With regard to warehouse, the pesticide storage, location structure, keepers, and standing materials for emergency are concerned with safety aspects. Concerning the spraying of chemicals, there are some problems to be discussed about clothes, spray equipment, wind direction, spray period, and spray workers condition. After the spray, treatment of used containers, remainder of Pesticides, and spray tools are also discussed. For the dissolutions of problems on public health and environmental danger arising from pesticide residues, there are two legal sanctions; 'Pesticide Tolerances' and 'Pesticide Safe Use Standards'. These regulations are legally effective, however, some problems still remain in practices to implement the acts properly, because these provisions are followed by the far mers mostly. With these regards, most problems are concerned with various sectors and persons, affecting public health and environment from the producers to the end users and consumers. As a whole persons concerned with pesticides, every possible effort has to be assembled to protect hazards from the chemicals. For the foremost place, special training and education are required for managing groups; such as factory managers and agricultural extension workers who are responsible for training the factory workers and farmers. The education is the only way to solve the hazard problems caused by the pesticides.

  • PDF

Development of Laboratory Safety Management System for Chemistry and Chemical Engineering Laboratory (화학 및 화학공학 실험실의 안전관리 시스템 개발)

  • Yoo, Jin Hwan;Lee, Heon Seok;Choi, Joung Woo;Seo, Jae Min;Park, Chulhwan;Ko, Jae Wook
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.376-382
    • /
    • 2008
  • There are many accidents such as fire and explosion in laboratories that have caused a great loss to lives and property in spite of the effort to the enhancement of laboratory safety level for years. Development of laboratory safety management system is a necessary to improve safety level because the accidents of similar types have periodically occurred in laboratories. The laboratory safety management system may reduce many accidents and a serious loss in laboratory. In this study, we summarized major items for a risk management and safety improvement based on the analysis results of various accidents in the laboratories. And then the laboratory safety management system was developed containing a laboratory safety management manual, a laboratory management system, a education management system, a MSDS (material safety data sheet) management system and a laboratory safety audit system. It may have a potential application for the laboratory safety management in the chemical laboratories.

Analysis on the Legal Control Levels and GHS Classification Information Status for Strongly Acidic Hazardous Materials (강산성 유해화학물질의 법적관리 수준 및 GHS 분류정보 제공 실태분석 연구)

  • Lee, Kwon Seob;Jo, Ji Hoon;Park, Jin Woo;Song, Se Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.384-392
    • /
    • 2013
  • Objective: This study inspected incident cases, legal control levels, and GHS(Globally Harmonized System of Classification and Labeling of Chemicals) classification results of strong acids such as hydrogen fluoride, hydrogen chloride, nitric acid, and sulfuric acid, which have been responsible for many recent chemical accidents. As a result, it is deemed necessary for legal control levels of these strong acids to be revised and GHS classification be managed nation-wide. Methods: This study inspected incident cases and legal control levels for strong acids such as hydrogen fluoride, hydrogen chloride, nitric acid, and sulfuric acid. The study analyzed and compared chemical information status and GHS classification results. Results: There were 76 domestic incidents involving strongly acidic hazardous materials over the five years between 2007 and 2011. They include 37 leakage incidents(46.7%) within a workplace, 30 leakage incidents(39.5%) during transportation, and nine leakage incidents(13.8%) following an explosion. The strongly acidic materials in question are defined and controlled as toxic chemicals according to the classes of Substances Requiring Preparation for Accidents, Managed Hazardous Substance, Hazardous Chemical(corrosive) as set forth under the Enforcement Decree of the Toxic Chemicals Control Act and Rules on Occupational Safety and Health Standards of Occupational Safety and Health Act. Among them, nitric acid is solely controlled as a class 6 hazardous material, oxidizing liquid, under the Hazardous Chemicals Control Act. The classification results of the EU ECHA(European Chemicals Agency) CLP(Commission Regulation(EC) No. 790/2009 of 10 August 2009, for the purposes of its adaptation to technical and scientific progress, Regulation(EC) No 1272/2008 of the European Parliament and of the Council on classification, labeling and packaging of substances and mixtures) and NIER (National Institute of Environmental Research) are almost identical for the three chemicals, with the exception of sulfuric acid. Much of the classification information of NITE (National Institute of Technology and Evaluation) and KOSHA(Korea Occupational Safety and Health Agency, KOSHA) is the same. NIER provides 12(41.4%) out of 29 classifications, as does KOSHA.

Estimation of the Flash Point for n-Pentanol + n-Propanol and n-Pentanol + n-Heptanol Systems by Multiple Regression Analysis (다중회귀분석법을 이용한 n-Pentanol + n-Propanol계 및 n-Pentanol + n-Heptanol계의 인화점 예측)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.31-36
    • /
    • 2016
  • The flash point is one of the most important properties for characterizing the fire and explosion hazard of liquid solutions. In this study, the flash points of two flammable binary mixtures, n-pentanol + n-propanol and n-pentanol + n-heptanol systems were measured using a Seta flash closed cup tester. The flash point was estimated using the methods based on Raoult's law and multiple regression analysis. The measured flash points were also compared with the predicted flash points. The absolute average errors (AAE) of the results calculated by Raout's law were $1.3^{\circ}C$ and $1.3^{\circ}C$ for the n-pentanol + n-propanol and n-pentanol + n-heptanol mixtures, respectively. The absolute average errors of the results calculated by multiple regression analysis were $0.4^{\circ}C$ and $0.3^{\circ}C$ for the n-pentanol + n-propanol and n-pentanol + n-heptanol mixtures, respectively. According to the AAE, the calculated values based on multiple regression analysis were better than those based on Raoult's law.

Exposure Assessment of Hazardous gases in Confined Spaces (밀폐공간 종류별 유해가스 발생 농도 평가)

  • Park, Hyunhee;Yoo, Kye-mook;Ham, Seung-hon;Chung, Kwang-Jae;Shin, Min-a;Lee, Koo-yong;Jang, Kyung-jo;Yoon, Chung-sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.4
    • /
    • pp.381-389
    • /
    • 2009
  • Confined spaces are inherently dangerous workplace and many fatal and nonfatal accidents have been reported. Even though these accidents occur in various kinds of confined spaces, there has rarely been reported on the health hazard agent, i.e., the types of gases and their concentration ranges. Therefore in this study, we evaluated several toxic and asphyxiating gas concentrations in various confined spaces. We surveyed 57 manholes, 3 sewage treatment plants, 2 yellow radish manufacturing companies and 7 barges to measure the concentrations of oxygen($O_2$), hydrogen sulfide($H_2S$), carbon monoxide(CO), ammonia($NH_3$). Lower Explosion Limits(LEL) and Volatile Organic Compounds (VOCs). Those four types of confined spaces occupies 56% of accidents during last 9 years in Korea. In 57 manholes, the concentration varied according to the types of manholes; rainfall and sewage, and by location; residential and industrial areas. Sewage manhole in industrial area was evaluated as the most hazardous than other types of manhole like rainfall manholes, residential sewage manholes. The highest $H_2S$ concentration and the lowest $O_2$ concentration at sewage manhole in industrial area were 300 ppm, 8.7% respectively. In 3 sewage treatment plants, $H_2S$ and $NH_3$ concentrations were reached up to the 500 ppm and 200 ppm respectively. Two yellow radish manufacturing companies showed the concentrations of 316 ppm, 505.2 ppm, 90 ppm and 15.7% for $H_2S$, CO, VOCs and $O_2$, respectively. Seven barges showed 15.9%~20.9% oxygen concentration. Gas species and concentration ranges varied by the types and location of confined spaces; CO, $H_2S$, $O_2$ could be hazardous in manhole, especially manhole connected to sewage plants. CO, $H_2S$, LEL, $O_2$, $NH_3$ should be controlled in sludge silo and sluge pumping confined spaces in sewage treatment plant. The activity of lifting out radish from the storage tank was evaluated more hazardous rather than the other activities in yellow radish manufacturing industry. The employers must conduct the survey to identify all possible confined spaces in their local workplace prior to performing the tasks. At the national level to reduce the accidents in the confined spaces, we suggest that systemic approach and active education program including possible hazards, standard operation procedures, ventilation plan, and personal protective equipment in confined spaces should be implemented.

Study on the Ship Fire Analysis According to Explosion Hazard (폭발의 위험성에 의한 선박화재의 사고사례 분석)

  • You, Jisun;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.80-86
    • /
    • 2015
  • This study analyzed recent cases of ship fires explosions and investigated their problems and coping plans. Through analysis on the statistical figures, it was found that our nation's situations of maritime accidents by kind during the period of 2009~2013 showed the ratios of ship accidents caused by fires explosions was the highest in 2012 with 7.58% (55 cases) followed by year 2009 with 3.39% (34 cases), year 2010 with 3.39% (25 cases), year 2011 with 6.03% (57 cases) and year 2013 with 6.74% (43 cases), which indicates a steady increase in the number of ship accidents. Majority of reasons for ship fires explosions were lack of safety awareness. Since those accidents happen on the sea, fires, once they happen, tend to get serious due to absence of on board & nearby fire extinguishing facilities, public fire service's uneasy access to them and great influences of natural factors such as wind and etc. Ship fires explosions are special cases unlike what happens to general edifices. So, their coping plans should focus on preventive measures since the damages those cases bring about can be detrimental. For this reason, it's necessary to research precise evacuation plans, develop ship structure & materials reinforcing fire resistance to secure more time for evacuation and enhance people's safety awareness by implementing thorough safety training.