• Title/Summary/Keyword: explicit scheme

검색결과 302건 처리시간 0.022초

차체판넬 스템핑공정의 동적 외연적해석과 동적해석에 미치는 영향인자 분석 (The dynamic explicit analysis of auto-body panel stamping process and investigating parameter affects of dynamic analysis)

  • 정동원
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.380-390
    • /
    • 1998
  • In the present work a finite element formulation using dynamic explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and direct trial-and-error method. In this work, for economic analysis the faster punch velocity and the mass scaling method are introduced. To investigate the effects of punch velocity and mass scaling, the various values of punch velocity and the various mass scalings are used for numerical analysis. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oil pan and a fuel tank.

최적화된 집적 유한 차분법을 위한 내재적 시간전진 기법의 개발 (Development of Optimized Compact Finite Difference Schemes)

  • 박노성;김재욱;이덕주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.7-12
    • /
    • 1998
  • Optimized high-order compact(OHOC) schemes were proposed, which have high spatial order of truncation and resolution to simulate the aeroacoustic problems due to unsteady compressible flows. Generally, numerical schemes are categorized explicit or implicit by time-marching method. In this research, OHOC differences which were developed with explicit time-marching method is used to have implicit formulation and the implicit OHOC differences result in block hepta-diagonal matrix. This paper presents the comparisons between the explicit and implicit OHOC schemes with a second order accuracy of time in the 1-d linear wave convection problem, and between the explicit OHOC scheme of 4th-order accuracy in time and the implicit OHOC scheme of 1st-order accuracy in tine for the 1-d nonlinear wave convection problem. With these comparisons, the characteristics of implicit OHOC scheme are shown in the point of CFL number.

  • PDF

동적-외연적 유한요소법을 이용한 차체 판넬 성형해석에 관한 연구 (A Study of Auto-body Panel Correction of Forming Analysis that Use Dynamic-extensive Finite Element Method)

  • 정동원;황재신
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.115-126
    • /
    • 2004
  • In the present work a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Analyzed auto-body panel stomping process correction of forming using software called Dynaform using dynamic extensive method. Further, the simulated results for the auto-body panel stamping processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

발사체 직접식 유도법의 유도성능 분석 (Performance Analysis of an Explicit Guidance Scheme for a Launch Vehicle)

  • 최재원
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.97-106
    • /
    • 1998
  • In this Paper, a fuel minimizing closed loop explicit inertial guidance algorithm for orbit injection of a rocket is developed. In the formulation, the fuel burning rate and magnitude of thrust are assumed constant. The motion of rocket is assumed to be subject to the average inverse-square gravity, but negligible effects from atmosphere. The optimum thrust angle to obtain a given velocity vector in the shortest time with minimizing fuel consumption is first determined, and then the additive thrust angle for targeting the final position vector is determined by using Pontryagin's maximum principle. To establish real time processing, many algorithms of onboard guidance software are simplified. The explicit guidance algorithm is simulated on the 2nd-stage flight of the N-1 rocket developed in Japan. The results show that the explicit guidance algorithm works well in the presence of the maximum $\pm$10% initial velocity and altitude errors, and exhibits better performance than the open-loop program guidance. The effects of the guidance cycle time are also examined.

  • PDF

A Scalable Explicit Multicast Protocol for MANETs

  • Gossain Hrishikesh;Anand Kumar;Cordeiro Carlos;Agrawal Dharma P.
    • Journal of Communications and Networks
    • /
    • 제7권3호
    • /
    • pp.294-306
    • /
    • 2005
  • Group oriented multicast applications are becoming increasingly popular in mobile ad hoc networks (MANETs). Due to dynamic topology of MANETs, stateless multicast protocols are finding increased acceptance since they do not require maintenance of state information at intermediate nodes. Recently, several multicast schemes have been proposed which scale better' with the number of multicast sessions than traditional multicast strategies. These schemes are also known as explicit multicast (Xcast; explicit list of destinations in the packet header) or small group multicast (SGM). In this paper, we propose a new scheme for small group' multicast in MANETs named extended explicit multicast (E2M), which is implemented on top of Xcast and introduces mechanisms to make it scalable with number of group members for a given multicast session. Unlike other schemes, E2M does not make any assumptions related to network topology or node location. It is based on the novel concept of dynamic selection of Xcast forwarders (XFs) between a source and its potential destinations. The XF selection is based on group membership and the processing overhead involved in supporting the Xcast protocol at a given node. If the number of members in a given session is small, E2M behaves just like the basic Xcast scheme with no intermediate XFs. As group membership increases, nodes may dynamically decide to become an XF. This scheme, which can work with few E2M aware nodes in the network, provides transparency of stateless multicast, reduces header processing overhead, minimizes Xcast control traffic, and makes Xcast scalable with the number of group members.

대류분산 모형에 관한 유한차분근사의 특성 (Characteristics of the Finite Difference Approximations for the Convective Dispersion Model)

  • 이길성;강주환
    • 대한토목학회논문집
    • /
    • 제7권4호
    • /
    • pp.147-157
    • /
    • 1987
  • 대류 분산 모형의 유한 차분 방법으로 양해법, Bresler방법, 음해법, upstream차분법과 Chaudhari방법등을 선택하여 각 차분법들의 특성을 규명하고 수치실험을 통하여 이들의 효율적인 사용 방안을 제시하였다. 비교 분석 결과 Chaudhari방법은 수치 분산 현상에 가장 둔감한 반면 조건부 안정이고, Bresler방법은 overshooting에 민감한 반면 무조건 안정이라는 특성이 있다. 분산이 지배적인 흐름에서는 양해법이 가장 정확하고, 대류가 지배적인 흐름에서는 Chaudhari방법이 가장 정확하다. 계산 시간(CPU)은 양해법 또는 Chaudhari방법이 비슷하게 가장 작고 Bresler방법이 항상 가장 크다.

  • PDF

1차원 압밀 F.D.M 해석의 최적도식(Scheme) 연구 (Study for the Pertinent Scheme of the One Dimensional FDM Analysis)

  • 김팔규;김지호;구기욱;류권일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.631-638
    • /
    • 2000
  • Pioneering work by Terzaghi imparted scientific and mathematical bases to many aspects of this subject and many people use this theory to measure the consolidation settlement until now. In this paper, Finite Difference Methods for consolidation are considered. First, it is shown the stability criterion of Explicit scheme and the Crank-Nicolson scheme, although unconditionally stable in the mathematical sense, produces physically unrealistic solutions when the time step is large. it is also shown that The Fully Implicit scheme shows more satisfactory behavior, but is less accurate for small time steps. and then we need to decide what scheme is more proper to consolidation. The purpose of this paper is to suggest the pertinent scheme to consolidation.

  • PDF

양해법을 이용한 일차원 지진해일 전파 유한요소모형의 분산보정 (Dispersion-Correction of 1-D Finite Element Model for Tsunami Propagation Using Explicit Scheme)

  • 윤성범;임채호;윤기승;최병호
    • 한국해안해양공학회지
    • /
    • 제16권2호
    • /
    • pp.57-63
    • /
    • 2004
  • 지진해일파는 조석에 비하면 파장이 짧아 상대적으로 분산성이 장하므로, 먼 거리를 전파하는 경우에는 분산성을 고려하여 해석하여야 한다. 본 연구에서는 파동방정식에 기초한 일차원 유한요소모형을 이용하여 지진해일 전파를 수치모의할 때 시간단계를 2단계로 나누어 양해법을 사용하면서도 분산효과를 고려할 수 있는 능동적인 분산보정기법을 개발하였다. 제안된 기법을 이용하여 계산한 수치해와 파의 분산효과를 고려한 해석해의 비교를 통해 본 연구에서 제안한 분산보정기법의 타당성을 확인하였다.

2차원 박판성형공정 해석을 위한 강소성 외연적 유한요소 수식화 (Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Forming Processes)

  • 안동규;정동원;정완진
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.88-99
    • /
    • 1996
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modeling of material requiring large computataion time. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. Thus, the effective ranges of parameters have been proposed for numerical simultion by the rigid-plastic explicit finite element method. A direct trial-and-error method is introduced to treat contact and friction. In computation, sheet material is assumed to possess normal anisotropy and rigid-plastic workhardening characteristics. In order to show the validity and effectiveness of the proposed explicit scheme, computations are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic exlicit finite element method can be used as a robust and efficient computational method for analysis of sheet metal forming.

대형 차체판넬 스템핑공정에서의 동적 외연적 탄소성 유한요소해석 (Dynamic Explicit Elastic-Plastic Finite Element Analysis of Large Auto-body Panel Stamping Process)

  • 정동원;김귀식;양동열
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.10-22
    • /
    • 1998
  • In the present work the elastic-plastic FE formulations using dynamic explicit time integration schemes are used for numerical analysis of a large auto-body panel stamping processes. For analyses of more complex cases with larger and more refined meshes, the explicit method is more time effective than implicit method, and has no convergency problem and has the robust nature of contact and friction algorithms while implicit method is widely used because of excellent accuracy and reliability. The elastic-plastic scheme is more reliable and rigorous while the rigid-plastic scheme require small computation time. In finite element simulation of auto-body panel stamping processes, the roobustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry conditions. The performnce of the dynamic explicit algorithms are investigated by comparing the simulation results of formaing of complicate shaped autobody parts, such as a fuel tank and a rear hinge, with the experimental results. It has been shown that the proposed dynamic explicit elastic-plastic finite element method enables an effective computation for complicated auto-body panel stamping processes.

  • PDF