• Title/Summary/Keyword: experimental facility

Search Result 768, Processing Time 0.032 seconds

Comparison Study of Experimental Neutron Room Scattering Corrections with Theoretical Corrections in RCL's Calibration Facility at KAERI (한국원자력연구소 중성자교정실에 대한 중성자산란보정인자 결정연구)

  • Yoon, Suk-Chul;Chang, Si-Young;Kim, Jong-Soo;Kim, Jang-Lyul;Kim, Bong-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.29-33
    • /
    • 1997
  • Neutron room scattering corrections that should be made when neutron detectors are calibrated with a $D_2O$ moderated $^{252}Cf$ neutron source in the center of a calibration room are considered. Such room scattering corrections are dependent on specific neutron source type, detector type, calibration distance, and calibration room configuration. Room scattering corrections for the responses of a thermoluminescence dosimeter and two different types of spherical detectors to neutron source in the Radiation Calibration Laboratory(RCL) neutron calibration facility at the Korea Atomic Energy Research Institute(KAERI) were experimentally determined and are presented. The measured room scattering results are then compared with theoretical results calculated by predicting room scattering effects in terms of parameters related to the specific configuration. Agreement between measured and calculated scattering correction is generally about 10% for three kinds of detectors in the calibration facility.

  • PDF

Development of Coaxial Propeller Test Facility and Experimental Study on Hover Performance Characteristics for Drone (드론용 동축 프로펠러 시험장치 개발 및 제자리비행 성능특성에 대한 실험적 연구)

  • Song, Youn-Ha;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • In this paper, the test facility for coaxial propellers at low Reynolds developed and validated by measured data. The test equipment was designed to measure the hovering performance of propellers according to distances between the upper/lower propellers. Thrust, torque, rotational speed, vibration, and amperage of upper and lower propellers can be measured separately. The data acquisition system was built to collect signals of sensors, and LabVIEW software was used to control the motor and collect the signal. The hover performance tests of single propellers were preceded for the facility validation, and then the performance values of coaxial propellers were measured according to distances and diameter differences between the upper/lower propellers. The results showed that the high efficiency is achieved at 20%~30% distance between the upper propeller and lower one. The configuration that the upper propeller has shorter diameter than the lower one has the highest efficiency than other configuration.

Performance Evaluation for Fast Conversion from Urea to an Ammonia Conversion Technology with a Plasma Burner (플라즈마 버너를 적용한 요소수에서 암모니아로의 고속 전환 기술 성능 평가)

  • Jo, Sungkwon;Kim, Kwan-Tae;Lee, Dae Hoon;Song, Young-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.5
    • /
    • pp.526-535
    • /
    • 2016
  • Recently, fine dust in atmosphere have been considerably issued as a harmful element for human. Nitrogen oxide ($NO_x$) exhausted from diesel engines and power plants has been disclosed as a main source of secondary production of fine dust. In order to prevent exhausting these nitrogenous compounds into atmosphere, a treatment system with selective catalytic reduction (SCR) catalyst with ammonia as a reductant has been used in various industries. Urea solution has been widely studied to supply ammonia into a SCR catalytic reactor, safely. However, the conversion of urea solution to ammonia has several challenges, especially on a slow conversion velocity. In the present study, a fast urea conversion system including a plasma burner was suggested and designed to evaluate the performances of urea conversion and initial operation time. A designed lab-scale facility has a plasma burner, urea nozzle, mixer, and SCR catalyst which is for hydrolysis of isocyane. Flow rate of methane that is a fuel of the plasma burner was varied to control temperatures in the urea conversion facility. From experimental results, it is found that urea can be converted into ammonia using high temperature condition of above $400^{\circ}C$. In the designed test facility, it is found that ammonia can be produced within 1 min from urea injection and the result shows prospect commercialization of proposed technology in the SCR facilities.

An Experimental Study on Compressive Loading Capacity of PCT System (PCT System의 압축내하력에 관한 실험적 연구)

  • Han, Man-Yup;Kim, Jae-Hong;Kang, Sang-Hun;Jin, Kyung-Seok;Jeon, Yong-Sik;Cho, Byung-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.41-44
    • /
    • 2008
  • The PCT that supports the walls of long span temporary shoring facility is previously manufactured in the way of prestressing, and it which is composed of concrete is improved precast structure to satisfy enough stiffness. The components of PCT are manufactured as a fixed form, and they are close to the inner side of the wall of temporary shoring facility by fixed means in PCT. PCT system as support structure is that the ends of concrete filled segment members are united by the means of connection and also they have connection hole. In this study, PCT has enough bearing power for the long span temporary shoring facility, and also make the term of work reduce due to that the time of curing reduce through the method of precast.

  • PDF

Fish Exposure and In Situ Field Pilot Tests in the Abandoned Mine Drainage for a Stream Restoration

  • Bae, Dae-Yeul;Kim, Ju-Yong;Kim, Kyoung-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.560-568
    • /
    • 2007
  • The objectives of this study were to analyze ecological effects on effluents from the Sagok Stream (Chonnam province) as an abandoned mine drainage through necropsy-based health assessments and fish exposure tests, and to conduct In situ field pilot tests for restoration of stream water. Also, we analyzed water quality including general parameters and heavy metals. The tests were performed three times on April 2005, April 2006, and April 2007. Also, we constructed a reactor facility in the outflowing point of the abandoned mine for the remediation of AMD wastewater. In lab test, death rates in all three treatments were ${\geq}50%$ in the experiments. Necropsybased fish tissue assessments using the Health Assessment Index (HAI), indicated that the most frequently damaged tissue was liver (average: 20.8). Values of Health Assessment Index were lower in the control than any other treatments of T1, T2, and T3 and three treatments showed a distinct toxicity impacts by the AMD. In situ lethal test, concentration of Fe, Al and Zn decreased particularly by 85%, 99% and 94%, respectively through the disposal facility. Values of pH, ranged from 3.1 to 7.0, increased by 2.3 fold (mean=5.1) along with the reduction of metal contents. All fishes in P1 cage died 100% on 3 days later after the experimental setting, while all fishes in the P6 died 100% on 9 days later. Overall, these results evidently provide a key methodology for pilot test using the disposal facility and also clarify the toxicity of AMD once again, so this approach used in the pilot facilities here may reduce the acidic and toxic effects in the abandoned mining drainage.

Design of the 1/8 Scaled HU-KINS Based on the Scaling Laws for the Experimental Investigation of Thermal-Hydraulic Effect of CANDU-6 Moderator (CANDU-6 원자로 감속재 열수력 개별영향실험을 위한 축소화 기법에 따른 1/8 축소형 HU-KINS 설계)

  • Lee, Jae-Young;Kim, Man-Woong;Kim, Nam-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.825-833
    • /
    • 2006
  • To investigate the moderator coolability for CANDU-6 reactors, a test facility (HU-KINS) has been manufactured as a 1/8 scaled-down of a calandria tank. In the design of the test facility, a scaling law was developed in such a way to consider the thermal-hydraulic characteristics of a CANDU-6 moderator. The proposed scaling law takes into consideration of the energy conservation, the dynamic similitude such as dimensionless numbers, Archimedes number (Ar) and Reynolds number (Re), and thermal-hydraulic properties similitude. Using this proposed scaling law, the thermal-hydraulic scaling analyses of similar test facilities such as the SPEL (1/10 scale) and the STERN (1/4 scale), have been identified. As a result, in the case of the SPEL, while the energy conservation is well defined, the similarities of Ar and the heat density are not well considered. As for the similarity of the STERN, while both the energy conservation and the characteristics of Ar are well defined, the heat density is not. In the meanwhile, the HU-KINS test facility with 1/8 length scaled-down is well similitude in compliance with all similarities of the energy conservation, the fluid dynamics and thermal-hydraulic properties. To verify the adequacy of the similarities in terms of thermal-hydraulics, a computational fluid dynamic (CFD) analysis has been conducted using the CFX-5 code. As the results of the CFD analyses, the predicted flow patterns and variation of axial properties inside the calandria tank are well consistant with those of previous studies performed with FLUENT and this implies that the present scaling method is acceptable.

A Conceptual Design on Performance Test Facility of Disposal Cover for the Near Surface Disposal of Low and Intermediate Level Radioactive Waste (중.저준위 방사성폐기물 천층처분을 위한 처분덮개의 성능실증 시험시설 개념설계)

  • 이찬구;박세문;김창락;염유선;이은용
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.245-254
    • /
    • 2001
  • The experimental study on disposal cover through the performance test facility offers reliability in the safety of near surface disposal of low and intermediate level radioactive waste. To ensure the long-term safety of the repository, the impermeability, integrity, resistance to degradation and ease of maintenance might be considered as the basic performance requirement of the disposal cover. considering the difficulties to meet these performance requirement by using single layer, the disposal cover design which is composed of top layer, middle drainage layer and bottom low permeability layer is schemed for the test facility. The water balance of the cover was evaluated by using HELP code. For the long-term monitoring of the soil moisture content and matric potential, TDR probes and tensiometers will be installed in 6 test cells. Each test cell is dimensioned 3$\times$3$\times$3.3m.

  • PDF

Flow Control Characteristics of Cavitating Venturi in a Liquid Rocket Engine Test Facility (액체로켓엔진 연소시험설비에서의 캐비테이션 벤튜리 유량공급 특성)

  • Kang, Donghyuk;Ahn, Kyubok;Lim, Byoungjik;Han, Sanghoon;Choi, Hwan-Seok;Seo, Seonghyeon;Kim, Hongjip
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.84-91
    • /
    • 2014
  • The flow rate control of a cavitating venturi has been investigated with downstream pressure variation. A set of cavitating venturies for a liquid rocket engine thrust chamber firing test facility have been designed and manufactured. The flow characteristics of the cavitating venturies have been analyzed by experimental and computational methods. Results showed that constant mass flow rate condition was established by the cavitation inside the venturi. However, upstream pressure less than the actual design pressure of the cavitating venturi could not supply a constant flow rate.

Preliminary Design of a High Altitude Test Facility using a Secondary Throat Exhaust Diffuser and an Ejector (이차목 디퓨저와 이젝터를 사용한 고공환경모사장치 예비설계)

  • Kim, Joong-Il;Jeon, Jun-Su;Kim, Tae-Wan;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.475-478
    • /
    • 2012
  • In this study, preliminary design of a high-altitude test facility (HATF) was performed to simulate the high-altitude environment using a rocket engine that liquid oxygen and kerosene were used as the propellant. Experimental facility consists of vacuum chamber, supersonic exhaust diffuser, heat exchanger, ejector and gas generator. The vacuum chamber was simulated and maintained high-altitude environmental pressure by supersonic exhaust diffuser. Combustion gas of the rocket engine was cooled by water at heat exchanger after that the mixed gas was emitted to the air by ejector. The ejector which was operated by the steam generator using 75% ethanol and liquid oxygen as propellants and water for steam maintains a vacuum condition.

  • PDF

Implementation of Facility Movement Recognition Accuracy Analysis and Utilization Service using Drone Image (드론 영상 활용 시설물 이동 인식 정확도 분석 및 활용 서비스 구현)

  • Kim, Gwang-Seok;Oh, Ah-Ra;Choi, Yun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.88-96
    • /
    • 2021
  • Advanced Internet of Things (IoT) technology is being used in various ways for the safety of the energy industry. At the center of safety measures, drones play various roles on behalf of humans. Drones are playing a role in reaching places that are difficult to reach due to large-scale facilities and space restrictions that are difficult for humans to inspect. In this study, the accuracy and completeness of movement of dangerous facilities were tested using drone images, and it was confirmed that the movement recognition accuracy was 100%, the average data analysis accuracy was 95.8699%, and the average completeness was 100%. Based on the experimental results, a future-oriented facility risk analysis system combined with ICT technology was implemented and presented. Additional experiments with diversified conditions are required in the future, and ICT convergence analysis system implementation is required.