• 제목/요약/키워드: existence and convergence theorems

검색결과 13건 처리시간 0.021초

A HYBRID PROXIMAL POINT ALGORITHM AND STABILITY FOR SET-VALUED MIXED VARIATIONAL INCLUSIONS INVOLVING (A, ${\eta}$)-ACCRETIVE MAPPINGS

  • Kim, Jong-Kyu;Li, Hong Gang
    • East Asian mathematical journal
    • /
    • 제26권5호
    • /
    • pp.703-714
    • /
    • 2010
  • A new class of nonlinear set-valued mixed variational inclusions involving (A, ${\eta}$)-accretive mappings in Banach spaces is introduced and studied, which includes many kind of variational inclusion (inequality) and complementarity problems as special cases. By using the resolvent operator associated with (A, ${\eta}$)-accretive operator due to Lan-Cho-Verma, the existence of solution for this kind of variational inclusion is proved, and a new hybrid proximal point algorithm is established and suggested, the convergence and stability theorems of iterative sequences generated by new iterative algorithms are also given in q-uniformly smooth Banach spaces.

GENERAL NONLINEAR VARIATIONAL INCLUSIONS WITH H-MONOTONE OPERATOR IN HILBERT SPACES

  • Liu, Zeqing;Zheng, Pingping;Cai, Tao;Kang, Shin-Min
    • 대한수학회보
    • /
    • 제47권2호
    • /
    • pp.263-274
    • /
    • 2010
  • In this paper, a new class of general nonlinear variational inclusions involving H-monotone is introduced and studied in Hilbert spaces. By applying the resolvent operator associated with H-monotone, we prove the existence and uniqueness theorems of solution for the general nonlinear variational inclusion, construct an iterative algorithm for computing approximation solution of the general nonlinear variational inclusion and discuss the convergence of the iterative sequence generated by the algorithm. The results presented in this paper improve and extend many known results in recent literatures.

DECAY RESULTS OF WEAK SOLUTIONS TO THE NON-STATIONARY FRACTIONAL NAVIER-STOKES EQUATIONS

  • Zhaoxia Liu
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.637-669
    • /
    • 2024
  • The goal of this paper is to study decay properties of weak solutions to Cauchy problem of the non-stationary fractional Navier-Stokes equations. By using the Fourier splitting method, we give the time L2-decay rate of weak solutions, which reveals that L2-decay is generally determined by its linear generalized Stokes flow. In second part, we establish various decay results and the uniqueness of the two dimensional fractional Navier-Stokes flows. In the end of this article, as an appendix, the existence of global weak solutions is given by making use of Galerkin' method, weak and strong compact convergence theorems.