• Title/Summary/Keyword: excitation intensity

Search Result 366, Processing Time 0.028 seconds

Effect of excitation intensity on slope stability assessed by a simplified approach

  • Korzec, Aleksandra;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.601-612
    • /
    • 2021
  • The paper concerns the selection of a design accelerograms used for the slope stability assessment under earthquake excitation. The aim is to experimentally verify the Arias Intensity as an indicator of the excitation threat to the slope stability. A simple dynamic system consisting of a rigid block on a rigid inclined plane subjected to horizontal excitation is adopted as a slope model. Strong ground motions recorded during earthquakes are reproduced on a shaking table. The permanent displacement of the block serves as a slope stability indicator. Original research stand allows us to analyse not only the relative displacement but also the acceleration time history of the block. The experiments demonstrate that the Arias Intensity of the accelerogram is a good indicator of excitation threat to the stability of the slope. The numerical analyses conducted using the experimentally verified extended Newmark's method indicate that both the Arias Intensity and the peak velocity of the excitation are good indicators of the impact of dynamic excitation on the dam's stability. The selection can be refined using complementary information, which is the dominant frequency and duration of the strong motion phase of the excitation, respectively.

Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses

  • Ni, Y.Q.;Wang, Y.W.;Xia, Y.X.
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.447-468
    • /
    • 2015
  • Modal identification of civil engineering structures based on ambient vibration measurement has been widely investigated in the past decades, and a variety of output-only operational modal identification methods have been proposed. However, vibration modes, even fundamental low-order modes, are not always identifiable for large-scale structures under ambient vibration excitation. The identifiability of vibration modes, deficiency in modal identification, and criteria to evaluate robustness of the identified modes when applying output-only modal identification techniques to ambient vibration responses were scarcely studied. In this study, the mode identifiability of the cable-stayed Ting Kau Bridge using ambient vibration measurements and the influence of the excitation intensity on the deficiency and robustness in modal identification are investigated with long-term monitoring data of acceleration responses acquired from the bridge under different excitation conditions. It is observed that a few low-order modes, including the second global mode, are not identifiable by common output-only modal identification algorithms under normal ambient excitations due to traffic and monsoon. The deficient modes can be activated and identified only when the excitation intensity attains a certain level (e.g., during strong typhoons). The reason why a few low-order modes fail to be reliably identified under weak ambient vibration excitations and the relation between the mode identifiability and the excitation intensity are addressed through comparing the frequency-domain responses under normal ambient vibration excitations and under typhoon excitations and analyzing the wind speeds corresponding to different response data samples used in modal identification. The threshold value of wind speed (generalized excitation intensity) that makes the deficient modes identifiable is determined.

Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet ( 2 ) - With Acoustic Excitation - (원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성 ( 2 ) - 음향여기된 제트 -)

  • Hwang, Sang-Dong;Lee, Chang-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.373-381
    • /
    • 2000
  • The flow and heat transfer characteristics on the impingement surface can be controlled by the change of vortex with the acoustic excitation, because the flow characteristics of an impinging jet are affected strongly by the vortices formed at the jet exit. To investigate the effects of acoustic excitation, we measured the velocity, turbulent intensity distributions for the free jet and local heat transfer coefficients on a impingement surface. As the acoustic excitation, subharmonic frequency of excited frequency plays an important role to the control of the jet flow. If the vortex pairings are promoted by the acoustic excitation, turbulence intensity of the jet flow is increased quickly. On the other hand if the vortex pairings are suppressed, the jet flow has low turbulence intensity at the center of the jet. Therefore, the low heat transfer rates are obtained on the impingement plate for a small nozzle-to-plate distance. However, it has high heat transfer rates at a large distance between the nozzle and plate due to the increasing of potential-core length.

A Study on Structural Intensity Measurement of 2-dimensional Structure (2차원 구조물의 진동 인텐시티 계측에 대한 연구)

  • 이덕영;박성태
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.477-488
    • /
    • 1997
  • In order to control vibration in structures, it is desirable to be able to identify dominant paths of vibration transmission from sources through the structure to some points of interest. Structural intensity vector(power flow per width of cross section) using cross spectra is able to measure the vibration power flow at a point in a structure. This paper describes the structural intensity measurement of 2-dimensional structure. Structural intensity of 2-dimensional structure can be obtained from eight point cross spectral measurement per axis, or two point measurement per axis on the assumption of far field. Approximate formulation of the relation between bending waves in structures and structural intensity makes it possible to separate the wave components by which one can get a state of the vibration field. Experimental results are obtained on an infinite plate at the near and far field in flexural vibration. The measurement error of two point measurement is rather bigger than eight point measurement on account of the assumption that Poisson's ratio is 1. The structural intensity vectors on the plate are checked the ability to identify the path of vibration power flow in random excitation and 200Hz sine excitation, the result of two point measurememt is almost the same as the result of eight point measurement in 200Hz sine excitation.

  • PDF

Development of the Fluorescence Endoscope System with Dual Light Source Apparatus (복합 광원을 갖는 형광 내시경 개발)

  • Bae, Soo-Jin;Kang, Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.222-226
    • /
    • 2007
  • We suggest the fluorescence endoscope system that has light source apparatus providing selectable white or excitation light. White light source generates normal color images and is easily switched over to excitation light with the wide spectrum range from 380 nm to 580 nm. 5-ALA is deposited selectively in the abnormal tissue like cancer and causes fluorescence in the red spectrum range when excited by blue spectrum range. In addition, the others of excitation light make the color background image by reflected light to allow accurate orientation and visualization of the abnormal tissue and around. According to clinical studies, the fluorescence intensity contrast that defines the fluorescence intensity of lesion over the fluorescence intensity of around has more than 2 in tumour. Proposed system is useful and objective way in early diagnosis. Furthermore, it can be used in the biopsy for tumour classification at the highest fluorescence intensity point.

Electron-excitation Temperature with the Relative Optical-spectrumIntensity in an Atmospheric-pressure Ar-plasma Jet

  • Han, Gookhee;Cho, Guangsup
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.201-207
    • /
    • 2017
  • An electron-excited temperature ($T_{ex}$) is not determined by the Boltzmann plots only with the spectral data of $4p{\rightarrow}4s$ in an Ar-plasma jet operated with a low frequency of several tens of kHz and the low voltage of a few kV, while $T_{ex}$ can be obtained at least with the presence of a high energy-level transition ($5p{\rightarrow}4s$) in the high-voltage operation of 8 kV. The optical intensities of most spectra that are measured according to the voltage and the measuring position of the plasma column increase or decay exponentially at the same rate as that of the intensity variation; therefore, the excitation temperature is estimated by comparing the relative optical-intensity to that of a high voltage. In the low-voltage range of an Ar-jet operation, the electron-excitation temperature is estimated as being from 0.61 eV to 0.67 eV, and the corresponding radical density of the Ar-4p state is in the order of $10^{10}{\sim}10^{11}cm^{-3}$. The variation of the excitation temperature is almost linear in relation to the operation voltage and the position of the plasma plume, meaning that the variation rates of the electron-excitation temperature are 0.03 eV/kV for the voltage and 0.075 eV/cm along the plasma plume.

Seismic design of structures using a modified non-stationary critical excitation

  • Ashtari, P.;Ghasemi, S.H.
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.383-396
    • /
    • 2013
  • In earthquake engineering area, the critical excitation method is an approach to find the most severe earthquake subjected to the structure. However, given some earthquake constraints, such as intensity and power, the critical excitations have spectral density functions that often resonate with the first modes of the structure. This paper presents a non-stationary critical excitation that is capable of exciting the main modes of the structure using a non-uniform power spectral density (PSD) that is similar to natural earthquakes. Thus, this paper proposes a new method to estimate the power and intensity of earthquakes. Finally, a new method for the linear seismic design of structures using a modified non-stationary critical excitation is proposed.

An experimental investigation on the errect of air entrainment (공기유입이 화재강도에 미치는 영향에 대한 실험적인 연구)

  • Kim, Jin-Guk
    • Fire Protection Technology
    • /
    • s.21
    • /
    • pp.5-12
    • /
    • 1996
  • An experimental investigation has been made with the objcetive of studying the effects of air entrainment of fire strength. A rich jet flame is considered as an fire, and fire, and the air entrainment is controlled by introducing the tone excitation which is generated by means of a loudspeaker-driven cavity. The excitation frequency is chosen for the resonant frequency identified as a pipe resonance due to acoustic excitation. As the excitation intensity increases, the amplitude of oscillating velocity for inducing air entrainment is increased, the flame height decreased and the structure of diffusion flame gradually transformed to that of premixed flame.

  • PDF

A Study on Structural Intensity Measurement of Semi-infinite Beam (반무한보의 진동 인텐시티 계측에 대한 연구)

  • 이덕영;박성태
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.43-53
    • /
    • 1997
  • This paper investigated the practical use for measuring the structural intensity (power flow per width of cross section) in a uniform semi-infinite beam in flexural vibration. The structural intensity is obtained as a vector at a measurement point, One-dimensional structural intensity can be obtained from 4-point cross spectral measurement, or 2-point measurement on the assumption of far field. The measurement errors due to finite difference approximation and phase mismatch of accelerometers are examined. For precise measurements, it would be better to make the value of k$\delta$(wave number x space between accelerometers) between 0.5 and 1.0. Formulation of the relation between bending waves in structures and structural intensity makes it possible to separate the wave components by which one can get a state of the vibration field. Experimental results are obtained from 2- and 4-point measurement performed at 200mm (near field) and 400mm (far field) apart from excitation point in random excitation. the results are compared with the theoretical values and measured values of input power spectrum in order to verify the accuracy of structural intensity method, 2-point method is suggested as the practical structural intensity method.

  • PDF

Limit of equivalence ratio on mixing enhancement in rich flames. (과농 예혼합화염의 혼합촉진에 대한 당량비 한계)

  • Kim, Jin-Kook;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.51-55
    • /
    • 1996
  • An experimental investigation has been made with the objective of studying the limits of equivalence ratio on mixing enhancement in a tone excited jet flame. The jet is pulsed by means of a loudspeaker-driven cavity and rich flames(${\phi}>1.5$) are used. The excitation frequency is chosen for the resonant frequency identified as a pipe resonance due to acoustic excitation. Methane, propane and butane are used to examine the effect of mixture property on the limit of equivalence ratio. Mixing is always enhanced in a methane/air flame as the excitation intensity increases. Constant lower limits of equivalence ratio for mixing enhancement are present in cases of propane/air and butane/air flames irrespective of mean mixture velocities. The equivalence ratio limits are also found to be related to the flame instability ; the lower Le, the higher the limit of equivalence ratio. Under the equivalence ratio limits, cellular flames are generated as the excitation intensity increases. The amplitude of oscillating velocity for generating a cellular flame in the equivalence ratio limit is proportional to a mean mixture velocity irrespective of fuels.

  • PDF