DOI QR코드

DOI QR Code

Electron-excitation Temperature with the Relative Optical-spectrumIntensity in an Atmospheric-pressure Ar-plasma Jet

  • Han, Gookhee (Department of Electrical and Biological Physics, Kwangwoon University) ;
  • Cho, Guangsup (Department of Electrical and Biological Physics, Kwangwoon University)
  • Received : 2017.10.30
  • Accepted : 2017.11.22
  • Published : 2017.11.30

Abstract

An electron-excited temperature ($T_{ex}$) is not determined by the Boltzmann plots only with the spectral data of $4p{\rightarrow}4s$ in an Ar-plasma jet operated with a low frequency of several tens of kHz and the low voltage of a few kV, while $T_{ex}$ can be obtained at least with the presence of a high energy-level transition ($5p{\rightarrow}4s$) in the high-voltage operation of 8 kV. The optical intensities of most spectra that are measured according to the voltage and the measuring position of the plasma column increase or decay exponentially at the same rate as that of the intensity variation; therefore, the excitation temperature is estimated by comparing the relative optical-intensity to that of a high voltage. In the low-voltage range of an Ar-jet operation, the electron-excitation temperature is estimated as being from 0.61 eV to 0.67 eV, and the corresponding radical density of the Ar-4p state is in the order of $10^{10}{\sim}10^{11}cm^{-3}$. The variation of the excitation temperature is almost linear in relation to the operation voltage and the position of the plasma plume, meaning that the variation rates of the electron-excitation temperature are 0.03 eV/kV for the voltage and 0.075 eV/cm along the plasma plume.

Keywords

References

  1. W. Wiese, J. Brault, K. Danzmann, V. Helbig, and M. Kock, Phys. Rev,. A 39, 2461 (1989). https://doi.org/10.1103/PhysRevA.39.2461
  2. A. Bogaerts, R. Gijbels, and J. Vlcek, Spectrochimica Acta Part B: Atomic Spectroscopy, 53, 1517 (1998). https://doi.org/10.1016/S0584-8547(98)00139-6
  3. A. Sarani, A. Nikiforov, and C. Leys, Phys.Plasmas, 17, 063504 (2010). https://doi.org/10.1063/1.3439685
  4. S. Forster, C. Mohr, and W. Viol, Surface Coat. Technol., 200 (2005) 827. https://doi.org/10.1016/j.surfcoat.2005.02.217
  5. A. Nikiforov, A. Sarani, and C. Leys, Plasma Sour. Sci. Technol., 20, 015014 (2011). https://doi.org/10.1088/0963-0252/20/1/015014
  6. S. Yugeswaran and V. Selvarajan, Vacuum, 81, 347 (2006). https://doi.org/10.1016/j.vacuum.2006.06.001
  7. T. Ichiki, T. Koidesawa, and Y. Horiike, Plasma Sour. Sci. Technol., 12, S16 (2003). https://doi.org/10.1088/0963-0252/12/4/315
  8. S. Reuter, J. Winter, A. Schmidt-Bleker, D. Schroeder, H. Lange, N. Knake, V. Gathen, and K. Weltmann, Plasma Sour. Sci. Technol., 21, 024005 (2012). https://doi.org/10.1088/0963-0252/21/2/024005
  9. X. Guimin, Z. Guanjun, S. Xingmin, M. Yue, W. Ning, and L. Yuan, Plasma Sci. Technol., 11, 83 (2009). https://doi.org/10.1088/1009-0630/11/1/17
  10. Q. Xiong, A. Nikiforov, N. Britun, R. Snyders, C. Leys, and X. Lu, J. Appl. Phys., 110, 73302 (2011). https://doi.org/10.1063/1.3643004
  11. D. Staack, B. Farouk, A. Gutsol, and A. Fridman, Plasma Sour. Sci. Technol., 17, 025013 (2008). https://doi.org/10.1088/0963-0252/17/2/025013
  12. D. Mariotti, Y. Shimizu, T. Sasaki, and N. Koshizaki, J. Appl. Phys., 101, 013307 (2007). https://doi.org/10.1063/1.2409318
  13. A. Rahman, A. Yalin, V. Surla, O. Stan, K. Hoshimiya, Z. Yu, E. Littlefiled, and G. Collins, Plasma Sour. Sci. Technol., 13, 537 (2004). https://doi.org/10.1088/0963-0252/13/3/021
  14. X. Zhu, W. Chen, and Y. Pu, J. Phys. D: Appl. Phys., 41, 105212 (2008). https://doi.org/10.1088/0022-3727/41/10/105212
  15. Y. Kim, S. Jin, G. Han, G. Kwon, J. Choi, E. Choi, H. Uhm, and G. Cho, IEEE Trans. Plasma Sci., 43, 944 (2015). https://doi.org/10.1109/TPS.2015.2388775
  16. A. Chingsungnoen, J. Wilson, V. Amornkitbamrung, C. Thomas, and T. Burinprakhon, Plasma Sour. Sci. Technol., 16, 434 (2007). https://doi.org/10.1088/0963-0252/16/3/002
  17. T. Chung, H. Kang, and M. Bae, Phys. Plasmas, 19, 113502 (2012). https://doi.org/10.1063/1.4765357
  18. F. J. Gordillo-Vazquez, M. Camero, and C. Gomez-Aleixandre, Plasma Sources Science and Technology, 15, 42 (2005).
  19. S. Darwiche, M. Nikravech, S. Awamat, D. Morvan, and J. Amouroux, Journal of Physics D: Applied Physics, 40, 1030 (2007). https://doi.org/10.1088/0022-3727/40/4/017
  20. Q. Jin, Y. Duan, and J. Olivares, Spectrochimica Acta Part B: Atomic Spectroscopy, 52, 131 (1997). https://doi.org/10.1016/S0584-8547(96)01553-4
  21. A. Sola, M. D. Calzada, and A. Gamero, Journal of Physics D: Applied Physics, 28, 1099 (1995). https://doi.org/10.1088/0022-3727/28/6/012
  22. J. Mirapeix, A. Cobo, O. M. Conde, C. Jauregui, and J. M. Lopez-Higuera, NDT & E International, 39, 356 (2006). https://doi.org/10.1016/j.ndteint.2005.10.004
  23. G. Cho, H. Lim, J. H. Kim, D. J. Jin, G. C. Kwon, E. H. Choi, and H. S. Uhm, IEEE Trans. Plasma Sci., 39, 1234 (2011). https://doi.org/10.1109/TPS.2011.2124473
  24. G. Cho, J. Kim, H. Kang, Y. Kim, G. Kwon, and H. Uhm, J. Appl. Phys., 112, 103305 (2012). https://doi.org/10.1063/1.4766756
  25. G. Cho, H. Kang, E. Choi, and H. Uhm, IEEE Trans. Plasma Sci., 41, 498 (2013). https://doi.org/10.1109/TPS.2012.2231948
  26. J. Jeong, Y. Kim, M. Lee, G. Han, H. Kim, D. Jin, J. Kim, E. Choi, H. Uhm, and G. Cho, J. Kor. Phys. Soc., 61, 557 (2012). https://doi.org/10.3938/jkps.61.557
  27. K. Baik, H. Kang, J. Kim, S. Park, J. Bang, H. Uhm, E. Choi, and G. Cho, Appl. Phys. Lett., 103, 164101 (2013). https://doi.org/10.1063/1.4825206
  28. D. Jin, H. Uhm, and G. Cho, Phys. Plasmas, 20, 083513 (2013). https://doi.org/10.1063/1.4819246
  29. M. Qian, C. Ren, D. Wang, J. Zhang, and G. Wei, J. Appl. Phys., 107, 063303 (2010). https://doi.org/10.1063/1.3330717
  30. L. Taghizadeh, A. Nikiforov, R. Morent, J. Mullen, and C. Leys, Plasma Process. Polym., 11, 777 (2014). https://doi.org/10.1002/ppap.201400022
  31. Z. Machala, M. Janda, K. Hensel, I. Jedlovsky, L. Lestinska, V. Foltin, V. Martisovits, and M. Morvova, J. Molecul. Spectros., 243, 194 (2007). https://doi.org/10.1016/j.jms.2007.03.001
  32. W. Wiese, M. Smith, and B. Glennon, Atomic Transition Probabilities Volume I Hydrogen Through Neon (US Government Printing Office, Washington, DC, 1966), pp. 1-153.
  33. W. Wiese, M. Smith, and B. Miles, Atomic Transition Probabilities Volume II Sodium through calcium (US Government Printing Office, Washington, DC, 1969), pp. 1-269.
  34. R. Pearse and A. Gaydon, The Identification of Molecular Spectra (Chapman and Hall, London, 1950), pp.1-276.
  35. G. Bastiaans and R. Mangold, Spectrochimica Acta Part B: Atomic Spectroscopy, 40, 885 (1985). https://doi.org/10.1016/0584-8547(85)80059-8
  36. G. Norlen, Physica Scripta, 8, 249 (1973). https://doi.org/10.1088/0031-8949/8/6/007