• Title/Summary/Keyword: exact order

Search Result 1,356, Processing Time 0.027 seconds

An improved kirchhoff approximation for radar scattering from rough surfaces (거친 표면 레이다 산란 해석을 위한 개선된 Kirchhoff 근사 방법)

  • Oh, Yisok
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.1
    • /
    • pp.45-52
    • /
    • 1995
  • A new Kirchhoff approximation(KA) method was proposed for microwave scttering from randomly rough surfaces. Using the spectral representation of delta function and its sifting theorem, a new KA was formulated directly without any further approximation, and this formulated was used to compute exact backscttering coefficients. The validity of the KA was verified by a numerical method, and this new KA technique was used to evaluate the existing approximated KkA methods; i.t., the zeroth-order and the first-order approximated physical optics(PO) models. It was shown that the first-order approximated PO model has small error than the zeroth-order approximated PO model at low incidence angles and the opposite happens at higher incidence angles. This new KA model can be used to compute exact scattering coefficients in the validity regions of KA and to evaluate other theoretical and numerical models for scattering from randomly rough surfaces.

  • PDF

A New Formula to Predict the Exact Detection Probability of a Generalized Order Statistics CFAR Detector for a Correlated Rayleigh Target

  • Kim, Chang-Joo
    • ETRI Journal
    • /
    • v.16 no.2
    • /
    • pp.15-25
    • /
    • 1994
  • In this paper we present a new formula which can predict the exact detection probability of a generalized order statistics (GOS) constant false alarm rate (DFAR) detector for a partially correlated Rayleigh target model (0 < $ \rho$< 1) in a closed form, where $\rho$ is the correlation coefficient between returned pulses. By simply substituting a set of specific coefficient into the derived formula, one can obtain the detection probability of any kind of CFAR detector. Detectors may include the order statistics CFAR detector, the censored mean level detector, and the trimmed mean CFAR detector, but are not necessarily restricted to them. The numerical result for the first order Markov correlation model as applied to some of the detectors shows that as $\rho$ increases from zero to one, higher signal-to-noise ratio is required to achieve the same detection probability.

  • PDF

Exact Solution for Resistance Capacity utilizing Bingham Model of MR Dampers under Collapse Load (붕괴하중을 받는 MR 댐퍼의 Bingham 모델을 이용한 저항성능 정해)

  • Seong, Ji-Young;Min, Kyung-Won;Kim, Jin-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.234-240
    • /
    • 2011
  • This study deals with progressive collapse of a structure retrofitted with MR dampers. In order to assess their effect of mitigation which prevents progressive collapse, control force ratio is defined by friction force of MR dampers divided by external force. First, simple model of a structure with MR dampers is suggested. Using the model, exact solution with the control force ratio is obtained. When and where the system is stopped is predicted by the derived solution. Through the dissipated energy by MR dampers during collapse event, equivalent damping ratio is derived. Finally, comparison of exact and equivalent solutions is presented.

The refined theory of 2D quasicrystal deep beams based on elasticity of quasicrystals

  • Gao, Yang;Yu, Lian-Ying;Yang, Lian-Zhi;Zhang, Liang-Liang
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.411-427
    • /
    • 2015
  • Based on linear elastic theory of quasicrystals, various equations and solutions for quasicrystal beams are deduced systematically and directly from plane problem of two-dimensional quasicrystals. Without employing ad hoc stress or deformation assumptions, the refined theory of beams is explicitly established from the general solution of quasicrystals and the Lur'e symbolic method. In the case of homogeneous boundary conditions, the exact equations and exact solutions for beams are derived, which consist of the fourth-order part and transcendental part. In the case of non-homogeneous boundary conditions, the exact governing differential equations and solutions under normal loadings only and shear loadings only are derived directly from the refined beam theory, respectively. In two illustrative examples of quasicrystal beams, it is shown that the exact or accurate analytical solutions can be obtained in use of the refined theory.

Exact Dynamic Element Stiffness Matrices of Shear Deformable Nonsymmetric Thin-walled Beam-Columns (전단변형을 받는 비대칭 박벽 보-기둥 요소의 엄밀한 동적강도행렬)

  • Yoon Hee-Taek;Park Young-Kon;Kim Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.536-543
    • /
    • 2005
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled curved beams subjected to axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. Firstly this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of the nonsymmetric thin-walled curved beam are evaluated and compared with analytical solutions or results by ABAQUS's shell elements in order to demonstrate the validity of this study.

  • PDF

An exact transfer matrix method for coupled bending and bending vibrations of a twisted Timoshenko beam

  • Lee, Jung Woo;Lee, Jung Youn
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.797-807
    • /
    • 2019
  • In this study, an exact transfer matrix expression for a twisted uniform beam considering the effect of shear deformation and rotary inertia is developed. The particular transfer matrix is derived by applying the distributed mass and transcendental function while using a local coordinate system. The results obtained from this method are independent for a number of subdivided elements, and this method can determine the required number of exact solutions for the free vibration characteristics of a twisted uniform Timoshenko beam using a single element. In addition, it can be used as a useful numerical method for the computation of high-order natural frequencies. To validate the accuracy of the proposed method, the computed results are compared with those reported in the existing literature, and the comparison results indicate notably good agreement. In addition, the method is used to investigate the effects of shear deformation and rotary inertia for a twisted beam.

Exact Static Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Elastic Beams (전단변형을 고려한 비대칭 박벽보의 엄밀한 정적 요소강도행렬)

  • 김남일;곽태영;이준석;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.345-352
    • /
    • 2001
  • Derivation procedures of exact static element stiffness matrix of shear deformable thin-walled straight beams are rigorously presented for the spatial buckling analysis. An exact static element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The buckling loads are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF

Exact Dynamic Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Beams Subjected to Initial Forces (초기하중을 받는 전단변형을 고려한 비대칭 박벽보의 엄밀한 동적 요소강도행렬)

  • 윤희택;김동욱;김상훈;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.435-442
    • /
    • 2001
  • Derivation procedures of exact dynamic element stiffness matrix of shear deformable nonsymmetric thin-walled straight beams are rigorously presented for the spatial free vibration analysis. An exact dynamic element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The natural frequencies are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF

Exact Dynamic Stiffness Matrix of Nonsymmetric Thin-walled Curved Beams Subjected to Axial Forces (축하중을 받는 비대칭 박벽 곡선보의 엄밀한 동적강도행렬)

  • Yoon, Hee-Taek;Park, Young-Kon;Kim, Moon-Young
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.906-915
    • /
    • 2004
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled curved beams subjected to axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. Firstly this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using clement force-displacement relationships. The natural frequencies of the nonsymmetric thin-walled curved beam are evaluated and compared with analytical solutions or results by ABAQUS's shell elements in order to demonstrate the validity of this study.

  • PDF

Derivation of Exact Dynamic Stiffness Matrix for Non-Symmetric Thin-walled Straight Beams (비대칭 박벽보에 대한 엄밀한 동적 강도행렬의 유도)

  • 김문영;윤희택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.369-376
    • /
    • 2000
  • For the general loading condition and boundary condition, it is very difficult to obtain closed-form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. Consequently most of previous finite element formulations introduced approximate displacement fields using shape functions as Hermitian polynomials, isoparametric interpoation function, and so on. The purpose of this study is to calculate the exact displacement field of a thin-walled straight beam element with the non-symmetric cross section and present a consistent derivation of the exact dynamic stiffness matrix. An exact dynamic element stiffness matrix is established from Vlasov's coupled differential equations for a uniform beam element of non-symmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequencies are evaluated for the non-symmetric thin-walled straight beam structure, and the results are compared with available solutions in order to verify validity and accuracy of the proposed procedures.

  • PDF