• 제목/요약/키워드: evolutionary stable strategy

검색결과 13건 처리시간 0.021초

Optimal Price Strategy Selection for MVNOs in Spectrum Sharing: An Evolutionary Game Approach

  • Zhao, Shasha;Zhu, Qi;Zhu, Hongbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권12호
    • /
    • pp.3133-3151
    • /
    • 2012
  • The optimal price strategy selection of two bounded rational cognitive mobile virtual network operators (MVNOs) in a duopoly spectrum sharing market is investigated. The bounded rational operators dynamically compete to sell the leased spectrum to secondary users in order to maximize their profits. Meanwhile, the secondary users' heterogeneous preferences to rate and price are taken into consideration. The evolutionary game theory (EGT) is employed to model the dynamic price strategy selection of the MVNOs taking into account the response of the secondary users. The behavior dynamics and the evolutionary stable strategy (ESS) of the operators are derived via replicated dynamics. Furthermore, a reward and punishment mechanism is developed to optimize the performance of the operators. Numerical results show that the proposed evolutionary algorithm is convergent to the ESS, and the incentive mechanism increases the profits of the operators. It may provide some insight about the optimal price strategy selection for MVNOs in the next generation cognitive wireless networks.

게임 이론에 기반한 공진화 알고리즘 (Game Theory Based Co-Evolutionary Algorithm (GCEA))

  • 심귀보;김지윤;이동욱
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.253-261
    • /
    • 2004
  • 게임 이론은 의사 결정 문제와 관련 된 연구와 함께 정립 된 수학적 분석법으로써 1928년 Von Neumann이 유한개의 순수전략이 존재하는 2인 영합게임은 결정적(deterministic)이라는 것을 증명함으로써 수학적 기반을 정립하였고 50년대 초, Nash는 Von Neumann의 이론을 일반화하는 개념을 제안함으로써 현대적 게임이론의 장을 열었다. 이후 진화 생물학 연구자들에 의해 고전적인 게임 이론의 가정에 해당하는 참가자들의 합리성(rationality) 대신 다윈 선택(Darwinian selection)에 의해 게임의 해를 탐색하는 것이 가능하다는 것이 밝혀지게 되었고 진화 생물학자 Maynard Smith에 의해 진화적 안정 전략(Evolutionary Stable Strategy: ESS)의 개념이 정립되면서 현대적 게임 이론으로써 진화적 게임 이론이 체계화 되었다. 한편 이와 같은 진화적 게임 이론에 관한 연구와 함께 생태계의 공진화를 이용한 컴퓨터 시뮬레이션이 1991년 Hillis에 의해 처음으로 시도되었으며 Kauffman은 다른 종들 간의 공진화적 동역학(dynamics)을 분석하기 위한 NK 모델을 제안하였다. Kauffman은 이 모델을 이용하여 공진화 현상이 어떻게 정적 상태(static state)에 이르며 이 상태들은 게임 이론에서 소개되어진 내쉬 균형이나 ESS에 해당한다는 것을 보여주었다. 이후, 몇몇 연구자들 게임 이론과 진화 알고리즘에 기반한 연산 모델들을 제시해 왔으나 실용적인 문제의 적용에 대한 연구는 아직 미흡한 편이다. 이에 본 논문에서는 게임 이론에 기반 한 공진화 알고리즘을(Game theory based Co-Evolutionary Algorithm: GCEA) 제안하고 이 알고리즘을 이용하여 공진화적인 문제들을 효과적으로 해결할 수 있음을 확인하는 것을 목표로 한다.

게임 이론과 공진화 알고리즘에 기반한 다목적 함수의 최적화 (Optimization of Multi-objective Function based on The Game Theory and Co-Evolutionary Algorithm)

  • 심귀보;김지윤;이동욱
    • 한국지능시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.491-496
    • /
    • 2002
  • 다목적 함수 최적화 문제(Multi-objective Optimization Problems : MOPs)는 공학적인 문제를 풀고자 할 때 자주 접하게 되는 대표적인 문제 중 하나이다. 공학자들이 다루는 실세계 최적화 문제들은 몇 개의 경합하는 목적 함수(objective function) 들로 이루어진 문제일 경우가 많다. 본 논문에서는 다목적 함수 최적화 문제의 정의를 소개하고 이 문제를 풀기 위한 몇 가지 접근법을 소개한다. 먼저 서론에서는 파레토 최적해(Pareto optimal solution) 의 개념을 이용한 기존의 최적화 알고리즘과 이와는 달리 게임 이론(Game Theory) 으로부터 도출된 최적화 알고리즘인 내쉬 유전자 알고리즘(Nash Genetic Algorithm Nash GA) 그리고 본 논문에서 제안하는 공진화 알고리즘의 기반이 되는 진화적 안정 전략 (Evolutionary Stable Strategy : ESS) 의 이론적 배경을 소개한다. 또 본론에서는 다목적 함수 최적화 문제와 파레토 최적 해의 정의를 소개하고 다목적 함수 최적화 문제를 풀기 위하여 유전자 알고리즘을 진화적 게임 이론(Evolutionary Game Theory : EGT) 에 적용시킨 내쉬 유전자 알고리즘과 본 논문에서 새로이 제안하는 공진화 알고리즘의 구조를 설명하고 이 두 가지 알고리즘을 대표적인 다목적 함수 최적화 문제에 적용하고 결과를 비교 검토함으로써 진화적 게임 이론의 두 가지 아이디어 내쉬의 균형(Equilibrium) 과 진화적 안정전략 에 기반한 최적화 알고리즘들이 다목적 함수 문제의 최적해 를 탐색할 수 있음을 확인한다.

Game Theory Based Coevolutionary Algorithm: A New Computational Coevolutionary Approach

  • Sim, Kwee-Bo;Lee, Dong-Wook;Kim, Ji-Yoon
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권4호
    • /
    • pp.463-474
    • /
    • 2004
  • Game theory is a method of mathematical analysis developed to study the decision making process. In 1928, Von Neumann mathematically proved that every two-person, zero-sum game with many pure finite strategies for each player is deterministic. In the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) as introduced by Maynard Smith in 1982. Keeping pace with these game theoretical studies, the first computer simulation of coevolution was tried out by Hillis. Moreover, Kauffman proposed the NK model to analyze coevolutionary dynamics between different species. He showed how coevolutionary phenomenon reaches static states and that these states are either Nash equilibrium or ESS in game theory. Since studies concerning coevolutionary phenomenon were initiated, there have been numerous other researchers who have developed coevolutionary algorithms. In this paper we propose a new coevolutionary algorithm named Game theory based Coevolutionary Algorithm (GCEA) and we confirm that this algorithm can be a solution of evolutionary problems by searching the ESS. To evaluate this newly designed approach, we solve several test Multiobjective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by the coevolutionary algorithm and analyze the optimization performance of our algorithm by comparing the performance of our algorithm with that of other evolutionary optimization algorithms.

Analyzing the Evolutionary Stability for Behavior Strategies in Reverse Supply Chain

  • Tomita, Daijiro;Kusukawa, Etsuko
    • Industrial Engineering and Management Systems
    • /
    • 제14권1호
    • /
    • pp.44-57
    • /
    • 2015
  • In recent years, for the purpose of solving the problem regarding environment protection and resource saving, certain measures and policies have been promoted to establish a reverse supply chains (RSCs) with material flows from collection of used products to reuse the recycled parts in production of products. It is necessary to analyze behaviors of RSC members to determine the optimal operation. This paper discusses a RSC with a retailer and a manufacturer and verifies the behavior strategies of RSC members which may change over time in response to changes parameters related to the recycling promotion activity in RSC. A retailer takes two behaviors: cooperation/non-cooperation in recycling promotion activity. A manufacturer takes two behaviors: monitoring/non-monitoring of behaviors of the retailer. Evolutionary game theory combining the evolutionary theory of Darwin with game theory is adopted to clarify analytically evolutionary outcomes driven by a change in each behavior of RSC members over time. The evolutionary stable strategies (ESSs) for RSC members' behaviors are derived by using the replicator dynamics. The analysis numerically demonstrates how parameters of the recycling promotion activity: (i) sale promotion cost, (ii) monitoring cost, (iii) compensation and (iv) penalty cost affect the judgment of ESSs of behaviors of RSC members.

게임 이론과 공진화 알고리즘에 기반한 다목적 함수의 최적화 (Optimization of Multi-objective Function based on The Game Theory and Co-Evolutionary Algorithm)

  • 김지윤;이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.395-398
    • /
    • 2002
  • 본 논문에서는 ‘다목적 함수 최적화 문제(Multi-objective Optimization Problem MOP)’를 풀기 위하여 유전자 알고리즘을 진화적 게임 이론 적용시킨 ‘내쉬 유전자 알고리즘(Nash GA)’과 본 논문에서 새로이 제안하는 공진화 알고리즘의 구조를 설명하고 이 두 알고리즘의 결과를 시뮬레이션을 통하여 비교 검토함으로써 ‘진화적 게임 이론(Evolutionary Game Theory : EGT)’의 두 가지 아이디어 -‘내쉬의 균형(Equilibrium)’과 ‘진화적 안정전략(Evolutionary Stable Strategy . ESS)’-에 기반한 최적화 알고리즘들이 다목적 함수 문제의 최적해를 탐색할 수 있음을 확인한다.

Game Model Based Co-evolutionary Solution for Multiobjective Optimization Problems

  • Sim, Kwee-Bo;Kim, Ji-Yoon;Lee, Dong-Wook
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권2호
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real-world problems encountered by engineers involve simultaneous optimization of competing objectives. In this case instead of single optima, there is a set of alternative trade-offs, generally known as Pareto-optimal solutions. The use of evolutionary algorithms Pareto GA, which was first introduced by Goldberg in 1989, has now become a sort of standard in solving Multiobjective Optimization Problems (MOPs). Though this approach was further developed leading to numerous applications, these applications are based on Pareto ranking and employ the use of the fitness sharing function to maintain diversity. Another scheme for solving MOPs has been presented by J. Nash to solve MOPs originated from Game Theory and Economics. Sefrioui introduced the Nash Genetic Algorithm in 1998. This approach combines genetic algorithms with Nash's idea. Another central achievement of Game Theory is the introduction of an Evolutionary Stable Strategy, introduced by Maynard Smith in 1982. In this paper, we will try to find ESS as a solution of MOPs using our game model based co-evolutionary algorithm. First, we will investigate the validity of our co-evolutionary approach to solve MOPs. That is, we will demonstrate how the evolutionary game can be embodied using co-evolutionary algorithms and also confirm whether it can reach the optimal equilibrium point of a MOP. Second, we will evaluate the effectiveness of our approach, comparing it with other methods through rigorous experiments on several MOPs.

Observer-Teacher-Learner-Based Optimization: An enhanced meta-heuristic for structural sizing design

  • Shahrouzi, Mohsen;Aghabaglou, Mahdi;Rafiee, Fataneh
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.537-550
    • /
    • 2017
  • Structural sizing is a rewarding task due to its non-convex constrained nature in the design space. In order to provide both global exploration and proper search refinement, a hybrid method is developed here based on outstanding features of Evolutionary Computing and Teaching-Learning-Based Optimization. The new method introduces an observer phase for memory exploitation in addition to vector-sum movements in the original teacher and learner phases. Proper integer coding is suited and applied for structural size optimization together with a fly-to-boundary technique and an elitism strategy. Performance of the proposed method is further evaluated treating a number of truss examples compared with teaching-learning-based optimization. The results show enhanced capability of the method in efficient and stable convergence toward the optimum and effective capturing of high quality solutions in discrete structural sizing problems.

양면시장형 컨버전스 산업생태계에서 플랫폼 경쟁에 관한 진화게임 모형 (An Application of Evolutionary Game Theory to Platform Competition in Two Sided Market)

  • 김도훈
    • 한국경영과학회지
    • /
    • 제35권4호
    • /
    • pp.55-79
    • /
    • 2010
  • This study deals with a model for platform competition in a two-sided market. We suppose there are both direct and indirect network externalities between suppliers and users of each platform. Moreover, we suppose that both users and suppliers are distributed in their relative affinity for each platform type. That is, each user [supplier] has his/her own preferential position toward each platform, and users [suppliers] are horizontally differentiated over [0, 1]. And for analytical tractability, some parameters like direct and indirect network externalities are the same across the markets. Given the parameters and the pricing profile, users and suppliers conduct subscription game, where participants select the platform that gives them the highest payoffs. This game proceeds according to a replicator dynamics of the evolutionary game, which is simplified by properly defining gains from participant's strategy in the subscription game. We find that depending on the strength of these network effects, there might either be multiple stable equilibria, at which users and suppliers distribute across both platforms, or one unstable interior equilibrium corresponding to the market tipping in favor of either platform. In both cases, we also consider the pricing power of competing platform providers under the framework of the Stackelberg game. In particular, our study examines the possible effects of the type of competition between platform providers, which may constrain the equilibrium selection in the subscription game.

인지무선 네트워크에서 진화게임을 이용한 효율적인 협력 스펙트럼 센싱 연구 (Efficient Spectrum Sensing Based on Evolutionary Game Theory in Cognitive Radio Networks)

  • 강건규;유상조
    • 한국통신학회논문지
    • /
    • 제39B권11호
    • /
    • pp.790-802
    • /
    • 2014
  • 인지무선 기술에서 주사용자의 보호를 위해 부사용자들은 주기적인 센싱 수행을 통해 주사용자의 부재를 판단하게 되고, 부사용자들 간의 협력 센싱을 통해서 향상된 센싱 결과를 얻을 수 있다. 하지만 주사용자에 대한 검출 확률과 오경보 확률에 대한 비용의 트레이드 오프가 존재하기 때문에, 적절한 협력 집단의 규모 유지가 필요하다. 또한 부사용자들은 자신이 현재 사용중인 주파수 대역은 물론 인가 사용자가 나타났을 시에 스위칭 해야 할 후보 채널에 대한 주기적인 센싱이 요구된다. 본 논문에서는 진화게임이론을 이용하여 분산상황 에서의 인밴드 센싱과 아웃밴드 센싱을 고려한 효율적인 그룹 협력 센싱 방법을 제안한다. 진화 게임을 통해서 협력센싱의 전략을 택한 부사용자들의 집단이 ESS(Evolutionary Stable State)상태로 수렴함을 관찰하였고, 학습 알고리즘을 통해 서로간의 정보교환 없이 평형상태로 수렴함을 관찰하였다.