KSII Transactions on Internet and Information Systems (TIIS)
/
제6권12호
/
pp.3133-3151
/
2012
The optimal price strategy selection of two bounded rational cognitive mobile virtual network operators (MVNOs) in a duopoly spectrum sharing market is investigated. The bounded rational operators dynamically compete to sell the leased spectrum to secondary users in order to maximize their profits. Meanwhile, the secondary users' heterogeneous preferences to rate and price are taken into consideration. The evolutionary game theory (EGT) is employed to model the dynamic price strategy selection of the MVNOs taking into account the response of the secondary users. The behavior dynamics and the evolutionary stable strategy (ESS) of the operators are derived via replicated dynamics. Furthermore, a reward and punishment mechanism is developed to optimize the performance of the operators. Numerical results show that the proposed evolutionary algorithm is convergent to the ESS, and the incentive mechanism increases the profits of the operators. It may provide some insight about the optimal price strategy selection for MVNOs in the next generation cognitive wireless networks.
게임 이론은 의사 결정 문제와 관련 된 연구와 함께 정립 된 수학적 분석법으로써 1928년 Von Neumann이 유한개의 순수전략이 존재하는 2인 영합게임은 결정적(deterministic)이라는 것을 증명함으로써 수학적 기반을 정립하였고 50년대 초, Nash는 Von Neumann의 이론을 일반화하는 개념을 제안함으로써 현대적 게임이론의 장을 열었다. 이후 진화 생물학 연구자들에 의해 고전적인 게임 이론의 가정에 해당하는 참가자들의 합리성(rationality) 대신 다윈 선택(Darwinian selection)에 의해 게임의 해를 탐색하는 것이 가능하다는 것이 밝혀지게 되었고 진화 생물학자 Maynard Smith에 의해 진화적 안정 전략(Evolutionary Stable Strategy: ESS)의 개념이 정립되면서 현대적 게임 이론으로써 진화적 게임 이론이 체계화 되었다. 한편 이와 같은 진화적 게임 이론에 관한 연구와 함께 생태계의 공진화를 이용한 컴퓨터 시뮬레이션이 1991년 Hillis에 의해 처음으로 시도되었으며 Kauffman은 다른 종들 간의 공진화적 동역학(dynamics)을 분석하기 위한 NK 모델을 제안하였다. Kauffman은 이 모델을 이용하여 공진화 현상이 어떻게 정적 상태(static state)에 이르며 이 상태들은 게임 이론에서 소개되어진 내쉬 균형이나 ESS에 해당한다는 것을 보여주었다. 이후, 몇몇 연구자들 게임 이론과 진화 알고리즘에 기반한 연산 모델들을 제시해 왔으나 실용적인 문제의 적용에 대한 연구는 아직 미흡한 편이다. 이에 본 논문에서는 게임 이론에 기반 한 공진화 알고리즘을(Game theory based Co-Evolutionary Algorithm: GCEA) 제안하고 이 알고리즘을 이용하여 공진화적인 문제들을 효과적으로 해결할 수 있음을 확인하는 것을 목표로 한다.
다목적 함수 최적화 문제(Multi-objective Optimization Problems : MOPs)는 공학적인 문제를 풀고자 할 때 자주 접하게 되는 대표적인 문제 중 하나이다. 공학자들이 다루는 실세계 최적화 문제들은 몇 개의 경합하는 목적 함수(objective function) 들로 이루어진 문제일 경우가 많다. 본 논문에서는 다목적 함수 최적화 문제의 정의를 소개하고 이 문제를 풀기 위한 몇 가지 접근법을 소개한다. 먼저 서론에서는 파레토 최적해(Pareto optimal solution) 의 개념을 이용한 기존의 최적화 알고리즘과 이와는 달리 게임 이론(Game Theory) 으로부터 도출된 최적화 알고리즘인 내쉬 유전자 알고리즘(Nash Genetic Algorithm Nash GA) 그리고 본 논문에서 제안하는 공진화 알고리즘의 기반이 되는 진화적 안정 전략 (Evolutionary Stable Strategy : ESS) 의 이론적 배경을 소개한다. 또 본론에서는 다목적 함수 최적화 문제와 파레토 최적 해의 정의를 소개하고 다목적 함수 최적화 문제를 풀기 위하여 유전자 알고리즘을 진화적 게임 이론(Evolutionary Game Theory : EGT) 에 적용시킨 내쉬 유전자 알고리즘과 본 논문에서 새로이 제안하는 공진화 알고리즘의 구조를 설명하고 이 두 가지 알고리즘을 대표적인 다목적 함수 최적화 문제에 적용하고 결과를 비교 검토함으로써 진화적 게임 이론의 두 가지 아이디어 내쉬의 균형(Equilibrium) 과 진화적 안정전략 에 기반한 최적화 알고리즘들이 다목적 함수 문제의 최적해 를 탐색할 수 있음을 확인한다.
International Journal of Control, Automation, and Systems
/
제2권4호
/
pp.463-474
/
2004
Game theory is a method of mathematical analysis developed to study the decision making process. In 1928, Von Neumann mathematically proved that every two-person, zero-sum game with many pure finite strategies for each player is deterministic. In the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) as introduced by Maynard Smith in 1982. Keeping pace with these game theoretical studies, the first computer simulation of coevolution was tried out by Hillis. Moreover, Kauffman proposed the NK model to analyze coevolutionary dynamics between different species. He showed how coevolutionary phenomenon reaches static states and that these states are either Nash equilibrium or ESS in game theory. Since studies concerning coevolutionary phenomenon were initiated, there have been numerous other researchers who have developed coevolutionary algorithms. In this paper we propose a new coevolutionary algorithm named Game theory based Coevolutionary Algorithm (GCEA) and we confirm that this algorithm can be a solution of evolutionary problems by searching the ESS. To evaluate this newly designed approach, we solve several test Multiobjective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by the coevolutionary algorithm and analyze the optimization performance of our algorithm by comparing the performance of our algorithm with that of other evolutionary optimization algorithms.
In recent years, for the purpose of solving the problem regarding environment protection and resource saving, certain measures and policies have been promoted to establish a reverse supply chains (RSCs) with material flows from collection of used products to reuse the recycled parts in production of products. It is necessary to analyze behaviors of RSC members to determine the optimal operation. This paper discusses a RSC with a retailer and a manufacturer and verifies the behavior strategies of RSC members which may change over time in response to changes parameters related to the recycling promotion activity in RSC. A retailer takes two behaviors: cooperation/non-cooperation in recycling promotion activity. A manufacturer takes two behaviors: monitoring/non-monitoring of behaviors of the retailer. Evolutionary game theory combining the evolutionary theory of Darwin with game theory is adopted to clarify analytically evolutionary outcomes driven by a change in each behavior of RSC members over time. The evolutionary stable strategies (ESSs) for RSC members' behaviors are derived by using the replicator dynamics. The analysis numerically demonstrates how parameters of the recycling promotion activity: (i) sale promotion cost, (ii) monitoring cost, (iii) compensation and (iv) penalty cost affect the judgment of ESSs of behaviors of RSC members.
본 논문에서는 ‘다목적 함수 최적화 문제(Multi-objective Optimization Problem MOP)’를 풀기 위하여 유전자 알고리즘을 진화적 게임 이론 적용시킨 ‘내쉬 유전자 알고리즘(Nash GA)’과 본 논문에서 새로이 제안하는 공진화 알고리즘의 구조를 설명하고 이 두 알고리즘의 결과를 시뮬레이션을 통하여 비교 검토함으로써 ‘진화적 게임 이론(Evolutionary Game Theory : EGT)’의 두 가지 아이디어 -‘내쉬의 균형(Equilibrium)’과 ‘진화적 안정전략(Evolutionary Stable Strategy . ESS)’-에 기반한 최적화 알고리즘들이 다목적 함수 문제의 최적해를 탐색할 수 있음을 확인한다.
International Journal of Control, Automation, and Systems
/
제2권2호
/
pp.247-255
/
2004
The majority of real-world problems encountered by engineers involve simultaneous optimization of competing objectives. In this case instead of single optima, there is a set of alternative trade-offs, generally known as Pareto-optimal solutions. The use of evolutionary algorithms Pareto GA, which was first introduced by Goldberg in 1989, has now become a sort of standard in solving Multiobjective Optimization Problems (MOPs). Though this approach was further developed leading to numerous applications, these applications are based on Pareto ranking and employ the use of the fitness sharing function to maintain diversity. Another scheme for solving MOPs has been presented by J. Nash to solve MOPs originated from Game Theory and Economics. Sefrioui introduced the Nash Genetic Algorithm in 1998. This approach combines genetic algorithms with Nash's idea. Another central achievement of Game Theory is the introduction of an Evolutionary Stable Strategy, introduced by Maynard Smith in 1982. In this paper, we will try to find ESS as a solution of MOPs using our game model based co-evolutionary algorithm. First, we will investigate the validity of our co-evolutionary approach to solve MOPs. That is, we will demonstrate how the evolutionary game can be embodied using co-evolutionary algorithms and also confirm whether it can reach the optimal equilibrium point of a MOP. Second, we will evaluate the effectiveness of our approach, comparing it with other methods through rigorous experiments on several MOPs.
Structural sizing is a rewarding task due to its non-convex constrained nature in the design space. In order to provide both global exploration and proper search refinement, a hybrid method is developed here based on outstanding features of Evolutionary Computing and Teaching-Learning-Based Optimization. The new method introduces an observer phase for memory exploitation in addition to vector-sum movements in the original teacher and learner phases. Proper integer coding is suited and applied for structural size optimization together with a fly-to-boundary technique and an elitism strategy. Performance of the proposed method is further evaluated treating a number of truss examples compared with teaching-learning-based optimization. The results show enhanced capability of the method in efficient and stable convergence toward the optimum and effective capturing of high quality solutions in discrete structural sizing problems.
This study deals with a model for platform competition in a two-sided market. We suppose there are both direct and indirect network externalities between suppliers and users of each platform. Moreover, we suppose that both users and suppliers are distributed in their relative affinity for each platform type. That is, each user [supplier] has his/her own preferential position toward each platform, and users [suppliers] are horizontally differentiated over [0, 1]. And for analytical tractability, some parameters like direct and indirect network externalities are the same across the markets. Given the parameters and the pricing profile, users and suppliers conduct subscription game, where participants select the platform that gives them the highest payoffs. This game proceeds according to a replicator dynamics of the evolutionary game, which is simplified by properly defining gains from participant's strategy in the subscription game. We find that depending on the strength of these network effects, there might either be multiple stable equilibria, at which users and suppliers distribute across both platforms, or one unstable interior equilibrium corresponding to the market tipping in favor of either platform. In both cases, we also consider the pricing power of competing platform providers under the framework of the Stackelberg game. In particular, our study examines the possible effects of the type of competition between platform providers, which may constrain the equilibrium selection in the subscription game.
인지무선 기술에서 주사용자의 보호를 위해 부사용자들은 주기적인 센싱 수행을 통해 주사용자의 부재를 판단하게 되고, 부사용자들 간의 협력 센싱을 통해서 향상된 센싱 결과를 얻을 수 있다. 하지만 주사용자에 대한 검출 확률과 오경보 확률에 대한 비용의 트레이드 오프가 존재하기 때문에, 적절한 협력 집단의 규모 유지가 필요하다. 또한 부사용자들은 자신이 현재 사용중인 주파수 대역은 물론 인가 사용자가 나타났을 시에 스위칭 해야 할 후보 채널에 대한 주기적인 센싱이 요구된다. 본 논문에서는 진화게임이론을 이용하여 분산상황 에서의 인밴드 센싱과 아웃밴드 센싱을 고려한 효율적인 그룹 협력 센싱 방법을 제안한다. 진화 게임을 통해서 협력센싱의 전략을 택한 부사용자들의 집단이 ESS(Evolutionary Stable State)상태로 수렴함을 관찰하였고, 학습 알고리즘을 통해 서로간의 정보교환 없이 평형상태로 수렴함을 관찰하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.