• 제목/요약/키워드: evolutionary fuzzy clustering

검색결과 24건 처리시간 0.019초

전역근사화 반응표면의 생성을 위한 퍼지모델링 및 퍼지규칙의 생성 (Fuzzy Modeling and Fuzzy Rule Generation in Global Approximate Response Surfaces)

  • 이종수;황정수
    • 한국지능시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.231-238
    • /
    • 2002
  • 진화퍼지모델링은 퍼지추론시스템과 진화연산의 장점을 결합한 모델링 방법으로써 전역근사최적화를 수행한다. 본 논문에서는 진화퍼지모델링의 가장 중요한 과정 중 하나인 퍼지규칙의 생성방법으로써 퍼지클러스터링을 제안한다. 퍼지클러스터링을 실험 혹은 시뮬레이션의 결과에 적용함으로써, 비선형성이 강하고 복잡한 설계문제를 적절하게 묘사할 수 있는 퍼지 규칙을 생성할 수 있다. 퍼지클러스터링의 결과로 얻어지는 클러스터에 대한 실험치의 소속정도를 활용하여 진화퍼지모델링의 효율을 향상시킬 수 있다. 제안된 방법의 유효성을 검증하기 위해 실제 자동차 내장재에 설계문제를 선정하여 전역근사화를 수행하였다. 클러스터 수와 퍼지규칙의 선택과 관련하여 여러 다양한 경우에 대해서 진화퍼지모델링을 수행하여 그 결과를 비교하였고 이를 통하여 제안된 방법이 시스템을 묘사하는 적절한 퍼지규칙을 생성하고 모델링의 오차를 만족할 만한 수준으로 유지하면서 계산시간을 줄일 수 있음을 확인하였다.

차분 진화 알고리즘을 이용한 Fuzzy Prototype Classifier 최적화 (The Optimization of Fuzzy Prototype Classifier by using Differential Evolutionary Algorithm)

  • 안태천;노석범;김용수
    • 한국지능시스템학회논문지
    • /
    • 제24권2호
    • /
    • pp.161-165
    • /
    • 2014
  • 본 논문에서는 입력 공간의 부분 영역의 특성을 기술하기 위하여 각 부분 영역을 대표하는 prototype을 정의하고 정의된 Prototype 에 가중치를 적용하여 각 부분 영역이 각 클래스의 경계면에 미치는 영향을 차등화 하는 Fuzzy Prototype 분류기를 제안 한다. 제안된 패턴 분류기의 Prototype은 퍼지 클러스터링 알고리즘인 Fuzzy C-Means Clustering 알고리즘을 사용하여 결정한다. 또한, 각 부분 영역의 가중치를 결정하기 위하여 유전자 알고리즘에서 파생된 차분 진화 알고리즘을 적용하여 각각의 퍼지 규칙의 가중치를 최적화 한다. 또한 퍼지 규칙 기반 시스템 기반 패턴 분류기의 경우 각각의 퍼지 규칙의 후반부 구조인 다항식의 계수를 추정하기 위하여 Linear Discriminant Analysis를 사용한다. 마지막으로, 본 논문에서 제안한 패턴 분류기의 패턴 분류 특성 및 성능을 평가하기위하여 기계 학습 데이터를 사용한다.

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권2호
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

진화연산과 적응적 ${\alpha}$-cut 기반 평가를 이용한 유전자 발현 데이타의 퍼지 클러스터 분석 (Fuzzy Cluster Analysis of Gene Expression Profiles Using Evolutionary Computation and Adaptive ${\alpha}$-cut based Evaluation)

  • 박한샘;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권8호
    • /
    • pp.681-691
    • /
    • 2006
  • 유전자 데이타의 클러스터링은 방대한 유전자 정보를 발현 정도에 따라 비슷한 그룹으로 나누어 분석하는 방법으로 유전자의 기능을 분석하는데 사용되어 왔다. 클러스터링의 한 종류인 퍼지 클러스터링은 하나의 샘플이 소속정도에 따라 여러 그룹에 동시에 소속되도록 나누는 방법으로, 하나의 유전자 데이타는 여러가지 유전 정보를 가칠 수 있기 때문에 유전자 발현 데이타의 분석에 보다 적절한 방법이다. 그러나 보통 클러스터링 방법은 초기 값에 민감하고, 지역해에 빠질 수 있는 단점을 갖는다. 이런 단점을 해결하기 위해 본 논문에서는 진화 연산을 이용한 퍼지 클러스터링 방법을 제안한다. 이때, 적합도 평가를 위해서 모든 데이타에 대해 동일한 기준을 적용하는 베이지안 검증방법의 단점을 개선하여, 데이타의 특성 을 고려하여 결정된 적용적 ${\alpha}$-cut 기반 평가방법을 사용한다. SRBCT 데이타와 효모 세포주기 데이타를 이용해 실험을 하고 결과를 분석하여 제안하는 방법의 유용성을 확인하였다.

Improvement of Support Vector Clustering using Evolutionary Programming and Bootstrap

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권3호
    • /
    • pp.196-201
    • /
    • 2008
  • Statistical learning theory has three analytical tools which are support vector machine, support vector regression, and support vector clustering for classification, regression, and clustering respectively. In general, their performances are good because they are constructed by convex optimization. But, there are some problems in the methods. One of the problems is the subjective determination of the parameters for kernel function and regularization by the arts of researchers. Also, the results of the learning machines are depended on the selected parameters. In this paper, we propose an efficient method for objective determination of the parameters of support vector clustering which is the clustering method of statistical learning theory. Using evolutionary algorithm and bootstrap method, we select the parameters of kernel function and regularization constant objectively. To verify improved performances of proposed research, we compare our method with established learning algorithms using the data sets form ucr machine learning repository and synthetic data.

침입 탐지를 위한 효율적인 퍼지 분류 규칙 생성 (Generation of Efficient Fuzzy Classification Rules for Intrusion Detection)

  • 김성은;길아라;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권6호
    • /
    • pp.519-529
    • /
    • 2007
  • 본 논문에서는 효율적인 침입 탐지를 위해 퍼지 규칙을 이용하는 방법을 제안한다. 제안한 방법은 퍼지 의사결정 트리의 생성을 통해 침입 탐지를 위한 퍼지 규칙을 생성하고 진화 알고리즘을 사용하여 최적화한다. 진화 알고리즘의 효율적인 수행을 위해 지도 군집화를 사용하여 퍼지 규칙을 위한 초기 소속함수를 생성한다. 제안한 방법의 진화 알고리즘은 적합도 평가시 퍼지 규칙(퍼지 의사결정 트리)의 성능과 복잡성을 고려하여 평가한다. 또한 데이타 분할을 이용한 평가와 퍼지 의사결정 트리의 생성과 평가 시간을 줄이는 방법으로 소속정도 캐싱과 zero-pruning을 사용한다. 제안한 방법의 성능 평가를 위해 KDD'99 Cup의 침입 탐지 데이타로 실험하여 기존 방법보다 성능이 향상된 것을 확인하였다. 특히, KDD'99 Cup 우승자에 비해 정확도가 1.54% 향상되고 탐지 비용은 20.8% 절감되었다.

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • 제12D권1호
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF

진화론적 데이터 입자에 기반한 퍼지 집합 기반 퍼지 추론 시스템의 최적화 (Optimization of Fuzzy Set-based Fuzzy Inference Systems Based on Evolutionary Data Granulation)

  • 박건준;이동윤;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.343-345
    • /
    • 2004
  • We propose a new category of fuzzy set-based fuzzy inference systems based on data granulation related to fuzzy space division for each variables. Data granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

진화론적 정보 입자에 기반한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계 (Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems Based on Evolutionary Information Granulation)

  • 박건준;김현기;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.340-342
    • /
    • 2004
  • In this paper, we introduce a new category of fuzzy inference systems baled on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of information with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. The proposed model is contrasted with the performance of the conventional fuzzy models in the literature.

  • PDF

데이터 분할 평가 진화알고리즘을 이용한 효율적인 퍼지 분류규칙의 생성 (Generation of Efficient Fuzzy Classification Rules Using Evolutionary Algorithm with Data Partition Evaluation)

  • 류정우;김성은;김명원
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.32-40
    • /
    • 2008
  • 데이터 속성 값이 연속적이고 애매할 때 퍼지 규칙으로 분류규칙을 표현하는 것은 매우 유용하면서도 효과적이다. 그러나 효과적인 퍼지 분류규칙을 생성하기 위한 소속함수를 결정하기는 어렵다. 본 논문에서는 진화알고리즘을 이용하여 효과적인 퍼지 분류규칙을 자동으로 생성하는 방법을 제안한다. 제안한 방법은 지도 군집화로 클래스 분포에 따라 초기 소속함수를 생성하고, 정확하고 간결한 규칙을 생성할 수 있도록 초기 소속함수를 진화시키는 방법이다. 또한 진화알고리즘의 시간에 대한 효율성을 높이기 위한 방법으로 데이터 분할 평가 진화 방법을 제안한다. 데이터 분할 평가 진화 방법은 전체 학습 데이터를 여러 개의 부분 학습 데이터들로 나누고 개체는 전체 학습 데이터 대신 부분 학습 데이터를 임의로 선택하여 평가하는 방법이다. UCI 벤치마크 데이터로 기존 방법과 비교 실험을 통해 평균적으로 제안한 방법이 효과적임을 보였다. 또한 KDD'99 Cup의 침입탐지 데이터에서 KDD'99 Cup 우승자에 비해 1.54% 향상된 인식률과 20.8% 절감된 탐지비용을 보였고 데이터 분할 평가 진화 방법으로 개체평가 시간을 약 70% 감소시켰다.