• 제목/요약/키워드: evolution-stars

검색결과 296건 처리시간 0.029초

SUSTAINING GALAXY EVOLUTION: THE ROLE OF STELLAR FEEDBACK

  • JAVADI, ATEFEH;VAN LOON, JACCO TH.;KHOSROSHAHI, HABIB
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.355-358
    • /
    • 2015
  • We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group galaxy M33. The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The pulsating giant stars (AGB and red supergiants) are identified and their distributions are used to derive the star formation rate as a function of age. These stars are also important dust factories; we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. The mass-loss rates are seen to increase with increasing strength of pulsation and with increasing bolometric luminosity. Low-mass stars lose most of their mass through stellar winds, but even super-AGB stars and red superginats lose ~40% of their mass via a dusty stellar wind. We construct a 2-D map of the mass-return rate, showing a radial decline but also local enhancements due to agglomerations of massive stars. By comparing the current star formation rate with total mass input to the ISM, we conclude that the star formation in the central regions of M33 can only be sustained if gas is accreted from further out in the disc or from circum-galactic regions.

IS CALCIUM II TRIPLET A GOOD METALLICITY INDICATOR OF GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES?

  • CHUNG, CHUL;YOON, SUK-JIN;LEE, SANG-YOON;LEE, YOUNG-WOOK
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.489-490
    • /
    • 2015
  • We present population synthesis models for the calcium II triplet (CaT), currently the most popular metallicity indicator, based on high-resolution empirical spectral energy distributions (SEDs). Our new CaT models, based on empirical SEDs, show a linear correlation below [Fe/H] ~ -0.5, but the linear relation breaks down in the metal-rich regime by converging to the same equivalent width. This relation shows good agreement with the observed CaT of globular clusters (GCs) in NGC 1407 and the Milky Way. However, a model based on theoretical SEDs does not show this feature of the CaT and fails to reproduce observed GCs in the metal-rich regime. This linear relation may cause inaccurate metallicity determination for metal-rich stellar populations. We have also confirmed that the effect of horizontal-branch stars on the CaT is almost negligible in models based on both empirical and theoretical SEDs. Our new empirical model may explain the difference between the color distributions and CaT distributions of GCs in various early-type galaxies. Based on our model, we claim that the CaT is not a good metallicity indicator for simple stellar populations in the metal-rich regime.

The CN-CH positive correlation in the globular cluster NGC 5286

  • Lim, Dongwook;Hong, Seungsoo;Lee, Young-Wook
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.42.2-42.2
    • /
    • 2017
  • We performed low-resolution spectroscopy for the red giant stars in the Galactic globular cluster (GC) NGC 5286, which is known to show intrinsic heavy element variations. We found that these stars are clearly divided into two subpopulations by CN index. These two subpopulations also show significant differences in the HK'and CH indices, where the CN-strong stars are more enhanced in both indices. From the comparison with high-resolution spectroscopic data of Marino et al. (2015), we found that the CN- and HK'-strong stars are also increased in the abundances of s-process elements and Fe. It appears that, therefore, these stars are later generation stars probably affected by supernova enrichment. In addition, NGC 5286 shows the CN-CH positive correlation among the whole sample, which is only discovered in the GCs with heavy element variations such as M22 and NGC 6273. Therefore, these results strengthen our previous suggestion that the CN-CH positive correlation may be associated with the heavy element variations in the GCs.

  • PDF

A NEW CLASS OF NEUTRON STAR BINARIES AND ITS IMPLICATIONS

  • LEE, CHANG-HWAN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.573-576
    • /
    • 2015
  • Recent discovery of $2M_{\odot}$ neutron stars in white dwarf-neutron star binaries, PSR J1614-2230 and PSR J0348+0432, has given strong constraints on the maximum mass of neutron stars. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than $1.5M_{\odot}$. These observations suggest that the neutron star masses in binaries may depend on the evolution process of neutron star binaries. In addition, recent works on LMXB (low-mass X-ray binaries) provides us the possibility of estimating the masses and radii of accreting neutron stars in LMXBs. In this talk, we discuss the implications of recent neutron star observations to the neutron star equation of states and the related astrophysical problems. For the evolution of neutron star binaries, we also discuss the possibilities of super-Eddington accretion onto the primary neutron stars.

On the origin of blue straggler stars in dwarf galaxies

  • Kim, Hak-Sub;Han, Sang-Il;Joo, Seok-Joo;Yoon, Suk-Jin;Lee, Young-Wook
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.86.2-86.2
    • /
    • 2017
  • Blue stragglers (BSs) are the objects that are brighter and bluer than the stars at main-sequence turn-off point. In this study, we present the Ca-by and VI photometry for Galactic dwarf spheroidal galaxies using Subaru/Suprime-Cam and investigate the spatial distribution characteristics of BS stars using the hk index as a photometric metallicity indicator. We compare the cumulative radial distribution of the BS stars with those of two groups of red-giant-branch (RGB) stars divided by the hk-index strength, and find that the spatial distribution of all BS stars is closer to that of hk-weak (i.e. metal-poor) RGB stars. We also find that the hk-strong BS stars are more centrally concentrated than the hk-weak ones. We will discuss the use of hk-index as a metallicity indicator for the hot BS stars and suggest possible explanations for the results in terms of the origin of BS stars in the dwarf gal.

  • PDF

Formation and Evolution of Contact Binaries

  • Eggleton, Peter P.
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권2호
    • /
    • pp.145-149
    • /
    • 2012
  • I describe a series of processes, including hierarchical fragmentation, gravitational scattering, Kozai cycles within triple systems, tidal friction and magnetic braking, that I believe are responsible for producing the modest but significant fraction of stars that are observed as contact binaries. I also discuss further processes, namely heat transport, mass transport, nuclear evolution, thermal relaxation oscillations, and further magnetic braking with tidal friction, that influence the evolution during contact. The endpoint, for contact, is that the two components merge into a single star, as recently was observed in the remarkable system V1309 Sco. The single star probably throws off some mass and rotates rapidly at first, and then slows by magnetic braking to become a rather inconspicuous but normal dwarf or subgiant. If however the contact binary was part of a triple system originally-as I suggested above was rather likely-then the result could be a $widish$ binary with apparently non-coeval components. There are several such known.

INFRARED COLOR-COLOR DIAGRAMS FOR AGB STARS

  • Suh, kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • 제24권3호
    • /
    • pp.197-202
    • /
    • 2007
  • We present infrared color-color diagrams of AGB stars from the observations at near and mid infrared bands. We compile the observations for hundreds of OH/IR stars and carbon stars using the data from the Midcourse Space Experiment (MSX), the two micron sky survey (2MASS), and the IRAS point source catalog (PSC). We compare the observations with the theoretical evolutionary tracks of AGB stars. From the new observational data base and the theoretical evolution tracks, we discuss the meaning of the infrared color-color diagrams at different wavelengths.

Yonsei Evolutionary Population Synthesis (YEPS) Model -III. Spectrophotometric Evolutions of Simple Stellar Population Models based on Empirical Spectra

  • Chung, Chul;Yoon, Suk-Jin;Lee, Young-Wook
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.38.1-38.1
    • /
    • 2013
  • We present the Yonsei evolutionary population synthesis (YEPS) models based on the high-resolution empirical spectral energy distributions (SEDs). We have adopted the MILES library in the optical wavelength, and our new models based on the MILES library show good agreements with our previous models presented in the YEPS I. The effect of hot horizontal-branch (HB) stars on the integrated properties of simple stellar populations (SSPs) is again confirmed by our models based on empirical SEDs. In addition, we have extended our empirical models to the near-IR wavelength and predicted the strengths of the calcium II triplet (CaT) and the Paschen triplet (PaT) based on the INDO-US and the Cenarro library. We find that the effect of HB stars and the age of SSPs on the CaT is almost negligible. On the other hands, the PaT models are very sensitive to the existence of hot stars, e.g., HB stars and young turn-off stars, and show very similar results with Balmer lines. Interestingly, the CaT distribution of GCs in NGC 1407, which is at odds with the optical (B-I) color distribution, can be explained by the unique feature of the CaT-[Fe/H] relations that show almost the same equivalent widths in the metal-rich regime. We will also discuss the impact of the second-generation populations on the strength of the CaT.

  • PDF

THE EVOLUTION OF A SPIRAL GALAXY: THE GALAXY

  • Lee, See-Woo;Park, Byeong-Gon;Kang, Yong-Hee;Ann, Hong-Bae
    • 천문학회지
    • /
    • 제24권1호
    • /
    • pp.25-53
    • /
    • 1991
  • The evolution of the Galaxy is examined by the halo-disk model, using the time-dependent bimodal IMF and contraints such as cumulative metallicity distribution, differential metallicity distribution and PDMF of main sequence stars. The time scale of the Galactic halo formation is about 3Gyr during which the most of halo stars and metal abundance are formed and ${\sim}95%$ of the initial halo mass falls to the disk. The G-dwarf problem could be explained by the time-dependent bimodal IMF which is suppressed for low mass stars at the early phase (t < 1Gyr) of the disk evolution. However, the importance of this problem is much weakened by the Pagel's differential metallicity distribution which leads to less initial metal enrichment and many long-lived metal-poor stars with Z < $1/3Z_{\odot}$ The observational distribution of abundance ratios of C, N, O elements with respect to [Fe/H] could be reproduced by the halo-disk model, including the contribution of iron product by SNIs of intermediate mass stars. The initial enrichment of elements in the disk could be explained by the halo-disk model, resulting in the slight decrease and then the increase in the slopes of the [N/Fe]- and [C/Fe]-distributions with increasing [Fe/H] in the range of [Fe/H] < -1.

  • PDF

volution of massive stars in Case A binary systems and implications for supernova progenitors

  • Lee, Hunchul;Yoon, Sung-Chul
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.70.4-71
    • /
    • 2020
  • One of the distinctive characteristics of the evolution of binary systems would be mass transfer. Close binary systems experience so-called Case A mass transfer during the main-sequence. We have performed calculations of the evolution of massive Case A (with the initial period 1.5 ~ 4.5 days) binary systems with the initial mass of 10 ~ 20 solar masses and mass ratio 0.5 ~ 0.95 using the MESA code. We find that in some systems, after the first mass transfer, the secondary stars evolve faster than the primary stars and undergo so-called 'reverse' mass transfer. Such phenomena tend to occur in relatively low-mass (initial mass < 16 solar masses) and close (initial period < 3 day) systems. Unless a system enters the common-envelope phase, the primary star would become a single helium star after the secondary star ends its life if the system were unbound by the neutron star kick. We find the various evolutionary implications of the remaining primary stars. In addition to the evolution into the compact single helium star progenitor, there is a possibility that the remaining primary star could evolve into a helium giant star, which could be a promising candidate for Type Ibn supernova progenitor, depending on the core mass. Further, we find that some primary stars satisfy the conditions for the formation of electron-capture supernova progenitor.

  • PDF