DOI QR코드

DOI QR Code

A NEW CLASS OF NEUTRON STAR BINARIES AND ITS IMPLICATIONS

  • LEE, CHANG-HWAN (Department of Physics, Pusan National University, Korea Institute of Science and Technology Information)
  • Received : 2014.11.30
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

Recent discovery of $2M_{\odot}$ neutron stars in white dwarf-neutron star binaries, PSR J1614-2230 and PSR J0348+0432, has given strong constraints on the maximum mass of neutron stars. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than $1.5M_{\odot}$. These observations suggest that the neutron star masses in binaries may depend on the evolution process of neutron star binaries. In addition, recent works on LMXB (low-mass X-ray binaries) provides us the possibility of estimating the masses and radii of accreting neutron stars in LMXBs. In this talk, we discuss the implications of recent neutron star observations to the neutron star equation of states and the related astrophysical problems. For the evolution of neutron star binaries, we also discuss the possibilities of super-Eddington accretion onto the primary neutron stars.

Keywords

References

  1. Aasi, J.,& LIGO-Virgo Scientific Collaboration, et al., 2013, Parameter Estimation for Compact Binary Coalescence Signals with the First Generation Gravitational-Wave Detector Network, Phys. Rev. D, 88, 062001. https://doi.org/10.1103/PhysRevD.88.062001
  2. Antoniadis, J. et al., 2013, A Massive Pulsar in a Compact Relativistic Binary, Science 340, 448.
  3. Brown, G. E., Heger, A., langer, N., Lee, C. -H., Wellstein, S., & Bethe, H. A. 2001, New Astronomy, 6, 457. https://doi.org/10.1016/S1384-1076(01)00077-X
  4. Brown, G. E., Lee, C. -H., & Bethe, H. A. 2000, Hypercritical Advection-Dominated Accretion Flow, ApJ, 541, 918. https://doi.org/10.1086/309454
  5. Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T., 2010, A Two-Solar-Mass Neutron Star Measured Using Shapiro Delay, Nature, 467, 1081. https://doi.org/10.1038/nature09466
  6. Guber, T., Psaltis, D., & Ozel, F., 2012a, Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. I. Apparent Radii, ApJ, 747, 76. https://doi.org/10.1088/0004-637X/747/1/76
  7. Guber, T., Ozel, F., & Psaltis, D., 2012b, Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. II. Eddington Limit, ApJ, 747, 77. https://doi.org/10.1088/0004-637X/747/1/77
  8. Harry, G. M. (for LIGO Scientific Collaboration), 2010, Advanced LIGO: the Next Generation of Gravitational Wave Detectors, Class. Quantum Gravity, 27, 084006. https://doi.org/10.1088/0264-9381/27/8/084006
  9. Lattimer, J. M. & Steiner, A. W., 2014, Neutron Star Masses and Radii from Quiescent Low-Mass X-Ray Binaries, ApJ, 784, 123 https://doi.org/10.1088/0004-637X/784/2/123
  10. Lee, C. -H., & Cho, H. S., 2014, Supercritical Accretion in the Evolution of Neutron Star Binaries and Its Implications, NuPhA, 928, 296.
  11. Li, Z., Gu, Z., Chen, L., Guo, Y., Qu, J., & Xu, R., 2014, An Ultra Low Mass and Small Radius Compact Object in 4U 1746-37?, ApJ, 798, 56 https://doi.org/10.1088/0004-637X/798/1/56
  12. Prakash, M., 2013, Neutron Stars and the EOS, 8th International Workshop on Critical Point and Onset of Deconfinement, to Appear in Proceedings of Science, arXiv,1307,0397
  13. Steiner, A. W., Lattimer, J. M., & Brown, E. F., 2010, The Equation of State from Observed Masses and Radii of Neutron Stars, ApJ, 722, 33. https://doi.org/10.1088/0004-637X/722/1/33