• Title/Summary/Keyword: event graph

Search Result 79, Processing Time 0.02 seconds

Formal Model 작성을 위한 Event Graph 모델링 연구

  • 박정현;최병규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.864-867
    • /
    • 1995
  • Presented in the paper is a structured approach to modeling automated manufacturing system (AMS) in the form of an event graph. The proposed two-phase procedure for formal modeling is 1) reference modeling by schematic supervisory control modeling and 2) event graph transformation from supervisory control model. Also described is a formal model for a small-sized FMS in the form of an event graph.

  • PDF

Graph-based Event Detection Scheme Considering User Interest in Social Networks (소셜 네트워크에서 사용자 관심도를 고려한 그래프 기반 이벤트 검출 기법)

  • Kim, Ina;Kim, Minyoung;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.449-458
    • /
    • 2018
  • As the usage of social network services increases, event information occurring offline is spreading more rapidly. Therefore, studies have been conducted to detect events by analyzing social data. In this paper, we propose a graph based event detection scheme considering user interest in social networks. The proposed scheme constructs a keyword graph by analyzing tweets posted by users. We calculates the interest measure from users' social activities and uses it to identify events by considering changes in interest. Therefore, it is possible to eliminate events that are repeatedly posted without meaning and improve the reliability of the results. We conduct various performance evaluations to demonstrate the superiority of the proposed event detection scheme.

Multi-site based earthquake event classification using graph convolution networks (그래프 합성곱 신경망을 이용한 다중 관측소 기반 지진 이벤트 분류)

  • Kim, Gwantae;Ku, Bonhwa;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.615-621
    • /
    • 2020
  • In this paper, we propose a multi-site based earthquake event classification method using graph convolution networks. In the traditional earthquake event classification methods using deep learning, they used single-site observation to estimate seismic event class. However, to achieve robust and accurate earthquake event classification on the seismic observation network, the method using the information from the multi-site observations is needed, instead of using only single-site data. Firstly, our proposed model employs convolution neural networks to extract informative embedding features from the single-site observation. Secondly, graph convolution networks are used to integrate the features from several stations. To evaluate our model, we explore the model structure and the number of stations for ablation study. Finally, our multi-site based model outperforms up to 10 % accuracy and event recall rate compared to single-site based model.

A Model Formalization Methodology of Discrete Event Simulation with Formal Tools (형식 도구를 이용한 이산사건 시뮬레이션의 모델 형식화 방법론)

  • ;;Jeong, Young Sik;Baik, Doo Kwon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.3
    • /
    • pp.79-99
    • /
    • 1992
  • The DEVS (Discrete Event system Specification) formal model for discrete event simulation is a hierarchical, modular model. Because the DEVS formal model has a mathematical structure, it provides a theoretic background of discrete event simulation model. However, the DEVS formal model is difficult to understand because of its mathematical structure. Also, since the DEVS formal model is often constructed by heuristic, subjective method of model designer from the model, a systematic model built-in methodology does not exist. In this paper, we propose the model formalization methodology from an informal model to the DEVS formal model. For this formalization methodology, we introduce formal tools for model construction based on the DEVS ( from an informal model : Event Dependency Graph (EDG) for the event analysis and State Representation Graph(SRG) for the system state analysis.

  • PDF

Modeling and Scheduling of Cyclic Shops with Time Window Constraints

  • Seo, Jeong-Won;Lee, Tae-Eog
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.161-164
    • /
    • 2000
  • A cyclic shop is a production system that repeatedly produces identical sets of jobs, called minimal part sets, in the same loading and processing sequence. We consider a version of cyclic shop where the operations are processed and unloaded within time limits, so called a time window. We model the shop using an event graph model, a class of Petri nets. To represent the time window constraint, we introduce places with negative time delays. From the shop modeling graph, we develop a linear system model based on the max- plus algebra and characterize the conditions on the existence of a stable schedule.

  • PDF

Sediment Yield by Instantaneous Unit Sediment Graph

  • Lee, Yeong-Hwa
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 1998
  • An instantaneous unit sediment graph (IUSG) model is investigated for prediction of sediment yield from an upland watershed in Northwestern Mississippi. Sediment yields are predicted by convolving source runoff with an IUSG. The IUSG is the distribution of sediment from an instantaneous burst of rainfall producing one unit of runoff. The IUSG, defined as a product of the sediment concentration distribution (SCD) and the instantaneous unit hydrograph (IUH), is known to depend on the characteristics of the effective rainfall. The IUH is derived by the Nash model for each event. The SCD is assumed to be an exponential function for each event and its parameters were correlated with the effective rainfall characteristics. A sediment routing function, based on travel time and sediment particle size, is used to predict the SCD.

  • PDF

The Mathematical Analysis of an Extended Mark Flow Graph for Design of the Discrete-event Control System (이산시스템 설계를 위한 확장된 마크흐름선도의 수학적 해석)

  • 김희정;백형구;김종민;여정모
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.692-695
    • /
    • 2001
  • The EMFG(Extended Mark Flow Graph) is not only a powerful tool to. designing the discrete-event system conceptually or specifically but also a good representation tool for implementing the system directly. We present a transitions-firing process and automatic changes of the number of marks in each box as a firing determination algorithm with the incident matrix and the state transition equation. The convenient analysis and design of a system as well as Computer Aided Design is possible because the operations of an EMFG ran be represented in the mathematical analysis with ease.

  • PDF

Sediment Yield by Instantaneous Unit Sediment Graph

  • Yeong Hwa Lee
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 1993
  • An instantaneous unit sediment graph (IUSG) model is investigated for prediction of sediment yield from an upland watershed In Northwestern Mississippi. Sediment yields are predicted by convolving source runoff with an IUSG. The IUSG is the distribution of sediment from an instantaneous burst of rainfall producing one unit of runoff. The IUSG, defined as a product of the sediment concentration distribution (SCD) and the instantaneous unit hydrograph (IUH), is known to depend on the characteristics of the effective rainfall. The IUH is derived by the Nash model for each event. The SCD is assumed to be an exponential function for each event and its parameters were correlated with the effective rainfall characteristics. A sediment routing function, based on travel time and sediment particle size, is used to predict the SCD.

  • PDF

Intrusion Detection on IoT Services using Event Network Correlation (이벤트 네트워크 상관분석을 이용한 IoT 서비스에서의 침입탐지)

  • Park, Boseok;Kim, Sangwook
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.24-30
    • /
    • 2020
  • As the number of internet-connected appliances and the variety of IoT services are rapidly increasing, it is hard to protect IT assets with traditional network security techniques. Most traditional network log analysis systems use rule based mechanisms to reduce the raw logs. But using predefined rules can't detect new attack patterns. So, there is a need for a mechanism to reduce congested raw logs and detect new attack patterns. This paper suggests enterprise security management for IoT services using graph and network measures. We model an event network based on a graph of interconnected logs between network devices and IoT gateways. And we suggest a network clustering algorithm that estimates the attack probability of log clusters and detects new attack patterns.

An Implementation of Spatio-Temporal Graph to Represent Situations in the Virtual World (가상현실 속의 상황 표현을 위한 시공간 그래프의 구현)

  • Park, Jong-Hee;Jung, Gung-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.6
    • /
    • pp.9-19
    • /
    • 2013
  • In this paper, we develop a Spatio-Temporal graph as of a key component of our knowledge representation Scheme. We design an integrated representation scheme to depict not only present and past but future in parallel with the spaces in an effective and intuitive manner. An event in general occupies not only a space but a time. Hence a crucial premise for the simulation of virtual situations is to position events in the multi-dimensional context, that is, 3-D space extended by the temporal dimension. Furthermore an event tends to have physical, social and mental aspects intertwined. As a result we need diverse information structures and functions to model entities and relations associated with events and to describe situations in different stances or perspectives of the virtual agents. These structures and functions are implemented in terms of integrated and intuitive representation schemes at different levels such as Ontology View, Instance View, ST View, Reality View. The resulting multi-dimensional comprehensive knowledge structure accommodates multi-layered virtual world developing in the time to maximize the diversity of situations in the historical context. The viability of this knowledge representation scheme is demonstrated with a typical scenario applied to a simulator implemented based on the ST Graph. The virtual stage based on the ST graph can be used to provide natural contexts for situated learning or next-generation simulation games.