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ABSTRACT

A cyclic shop is a production system that repeatedly produces identical sets of jobs, called minimal part sets, in
the same loading and processing sequence. We consider a version of cyclic shop where the operations are
processed and unloaded within time limits, so called a time window. We model the shop using an event graph
model, a class of Petri nets. To represent the time window constraint, we introduce places with negative time
delays. From the shop modeling graph, we develop a linear system model based on the max- plus algebra and
characterize the conditions on the existence of a stable schedule. .
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1. Introductions

Manufacturers have tried to reduce work-in-
progress (WIP) and manufacturing lead times, especially
when there are demands on muiltiple product models.
Therefore, setup times for switching product models at
a machine have been significantly reduced by auto-
mation or process innovation. Examples include auto-
mated flexible manufacturing systems, cellular lines and
flexible lines. Such a flexible shop can simultaneously
produce multiple product models. In this case, a cyclic
production method of producing multiple items in a
cyclic order is often used. For cyclic production, the
production requirement of multiple items is decomposed
into the smallest set that has the same or approx-
imately same proportion of items, called a minimal
part set (MPS) [10]. For example, when the production
requirement is given as 5000 units of part A, 3000
units of part B, and 2000 units of part C, the MPS is
{5A, 3B, 2C}. The MPSs are produced 1000 times in
the same loading and processing sequence at each
machine. Such a flexible shop is called a cyclic shop
and the scheduling method is called cyclic scheduling.
Recent industrial examples of cyclic production include
flexible manufacturing systems, PCB assembly lines,
video cassette recorder deck assembly lines, refrigerator
assembly lines and even heavy equipment assembly
lines. Especially, a shop with chemical or plating treat-
ments, such as an automated electroplating line for pro-
ducing printed circuit boards and a cluster tool for
wafer fabrication, has the critical timing constraints
which the jobs are processed and unloaded within a
time limit, so called time window constrains. Generally,
the time windows are defined as a pair of upper and
lower bound of the sojourn time in the machines (or
processors), that is, they are given as [di, di+6;], where
d; denotes a processing time of operation i and §
denotes a (maximal) waiting time after the process is
completed.

A cyclic scheduling problem is to determine the
processing sequence and the starting times of the op-
erations at each machine when the MPS is given and
the operations are assigned to the machines. In a shop
with time window constraints, there is two important
issues. One is to determine whether the sequence is
feasible, that is, in a given sequence, there exists start-
ing times of operations that satisfy the time window
constraints. The other is to find the starting times of
each operation so that the operations are finished
within the time windows. In the cyclic scheduling pro-
blem, the primary performance measure is the cycle
time (or its reciprocal, throughput rate).

There are studies on versions of cyclic scheduling
problems including Ahmadi and Wurgaft {1}, Chaar and
Davidson {3], Graves et al. [6], Hanen [7], Hall et al
[8, 9], Kamoun and Sriskandarajah [11], Karabati and
Kouvelis [12], Lee [14], Lee and Posner [13], Matsuo
[15]), McCormick et al. [16], Roundy [17], and Sethi et
al. [18]). Most of them discuss sequencing and timing
issue for cyclic shops without time window constraints.

For a basic cyclic job shop, Lee [14] propose the
use of a linear system approach based on a special
algebra of [4] called the max-plus algebra for proving
the existence of SESSs and developing an efficient
algorithm of computing all SESSs.

We are interested in extending the results of Lee
[14] to cyclic shops with time window constraints.
Once we can develop a linear system model for this
shop, we would prove the existence of stable timely
starting schedules (STSSs) that each operation starts
when all its preceding operations are completed and the
time window constraint is satisfied.

In this paper, we discuss the scheduling problem
and the timing control of an cyclic shop with time
window constraints. We characterize the condition on
the existence of STSSs. To do this, we introduce a
modified event graph model, which has negative time
delay. We then develop a linear system model based
on the max-plus algebra using the modified event graph
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model.
2. An Event Graph Model

We define an cyclic shop with time window
constraint. Let M be the set of machines (or
workstations) and J be the set of jobs that comprises
an MPS. There can be multiple jobs of the same type
in the MPS. However, without loss of generality, we
assume that there are J “distinct™ jobs in the MPS.
Each job has one or more operations that have some
technological precedence constraints among them. Let N
be the set of operations in the MPS. A machine
repeats the assigned operations in an identical cyclic
order. Each job has a time limit in each machine, that
is, operation i completed a process has to be unloaded
from the machine within &, called a maximal waiting
time. We model the shop using an event graph with
negative time delays, a class of Petri nets. For
simplicity, we assume that the jobs are immediately
transported to the next machine. We also model the
tasks of material handling systems, such as robots,
AGVs, or hoists.

To model a cyclic shop with time window
constrains, we first mode! the starting (loading) and the
ending (unloading) of each operation. Second, the
precedence relationship and the time window constrains
are modeled arcs and time delays. For example, we let
x; and x; be a starting time and an ending time of an
operation. Then, the precedence relationship is given as
x;zx;+p, where d; is the processing time of ope-
ration i. And, the time window constraint is given as
xj=x;+ p;+ 8, where §; is the maximal time limit by
which the job waits in the machine after processing.
This two relationships for each operation are modeled
as circuits with negative circuit weights. In Example 1,
we illustrate a modified event graph model for a cyclic
flow line with time window constrains.

Figure 1. An event graph model for a cyclic flow

line with time window constraints,

Example 1. The shop has three machines, M), M,,
and M;, that process two parts, and J,. The MPS is
(15, 1/;). Part J, and [, have operations, ( a;, ay, a3)

and ( by, by, b3), respectively. The input sequence is J
and J;. The precedence relations of the operations and

the time window constraints are shown as a graph in
Figure 1.

In Figure 1, the bold bars are immediate tran-
sitions with no time delay. The immediate transitions
represent the tasks of loading and unloading tasks. For
example, T, represents a loading task of operation g

into machine M,;. T, represents both the unloading

task of operation @, from machine M; and the load-
ing task of operation @, into machine M. Place P,
on a machine cycle represents an operation i and has
an operation time ;. Place P represents the time
window constraint and has a negative time delay,
—d,— 6;. For example, P, is a timed place modeling

operation g; and P, is a timed place with a negative

time delay —d,—d&,. In each machine circuit, the
place having a token, called recycling place, initiates
the next MPS instance. Such a modified event grap

model is denoted by PN.
3. A Steady State Analysis

For timing control of the operations, we take the
timely starting strategy that each operation starts when
all its preceding operations are completed and the time
window constraints are satisfied. Because of the time
window constraints, some operations start after
appropriate time delays in order to be completed within
time limits of the processes. Therefore, the timely
starting strategy need to deliberately control the timings
of the operations and to determine the appropriate time
delays of the operations.

For the timely starting strategy, we analyze the
schedule pattern or the timing pattern of the operations
and to know whether the schedule repeats an identical
pattern for each MPS instance.

The steady state, if it exists, is defined as
x/t'—x7=4 for all »=1,2,.., where x/ is the
timely epoch time of transition / at the rth MPS
instance and A is the steady state cycle time. A
schedule in a steady state is called stable and 4 is
called the steady state cycle time or simply cycle time.
We wish to know whether there exists a stable timely
staring schedule (STSS) such that the cycle time A is
minimal for the given processing sequence of the ope-
rations at each machine and how we can identify such
STSSs. Once existence of STSSs is identified, the sche-
duling problem reduces to the scheduling problem for a
single MPS.

To analyze the schedule pattern, we first develop a
dynamic equation for the timely starting times based on
the shop modeling graph. N,&N and N,SN denote
the sets of the first transitions and the last transitions
of the MPS on each machine, respectively. N,, denotes
the transitions associated with loading and unloading
tasks to machine m. Then, we have the following
dynamic equation.
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DE: For »=1,2,...,

max {x; "1+ d 2]+ d ),

ol = if jeN, i€Ngi,j=N,
’ r+1 r+1
max {x] "'+ d g2/ +d ),
otherwis,

and £ is the
transition preceding j in the same job flow. Since &
precedes j in the same job flow, & and j has the same
MPS instance. If j is the first transition of a job, then
the preceding operation k does not exist. In this case, &
is considered as a dummy transition 0 such that
dy;=—0o0. The first part of DE states that when ;”*!
is the first transition of (r+1)-th MPS at a machine, it
can start after the last operation of the previous MPS
instance as well as its preceding operation %£7*! in the
same MPS instance.

To analyze steady state behavior of DE, we
develop a linear system model for DE. Then, we show
that the linear system model has a finite eigenvalue
and ecigenvectors, which define the steady state cycle
time and the steady states of DE, respectively. To
represent DE in a linear form, we use the max-plus
algebra of Baccelli et al. [2] and Cuninghame-Green
[4] (for more details, see the references).

Now, we define the matrices for modeling DE for
the modified event graph. We let A and B denote
nXn matrices with elements g ; and b, respectively.

a;=dy; and b;=0. Using (R,P,®), DE is then
represented in a matrix form:

where d; is the delay time of place P

224

xM=(x""® A ® (x” ® B)

where x "=(x{, x5, ...,x0).

Matrix A is considered as the incidence matrix of
the subgraph of the modified event graph that excludes
the recycling places P, and the associated arcs at
each machine, where jeN, ieN,; A% is the length
of the longest path among all paths from node i to
node j with exactly &k arcs in the subgraph. In our
modified event graph, the subgraph has some circuits
because of the places and arcs for time window
constraints. Therefore, A*(=] @A DA? - DA™)
may diverse when a circuit of the subgraph has a
positive circuit weight (see Theorem 3.20 of [2]).

Lemma 1. If the subgraph has no circuits with

positive circuit weights, then matrix A=B ® A" is

finitely defined. And, we have a linear system:
xMl=x"® A, r=1,2,..

The linear system relates the timely starting times of

the operations, by which we can analyze the schedule

pattern of each MPS.

Proof. The proof is directly derived by Theorem 3.20
of [2].

Using Lemma 1, we can verify whether the shop has a
feasible cyclic schedule. And, we can determine the
time limits for each operation in order to produce the
job within the time window.

Example 2. In the Example 1, we suppose that
do=4, d,=3, d,=2, d,=2, dy,=5 ds=1,
and §,=0 for all operations. This implies that the
shop has no-wait constraints. Then, we have matrices A
, B and A as follows.

— o0 4 —00 —00 —00 —00 —O00 — 00
—4 —o 3 — 00 —00 —00 —Oo0 —O00
—00 =3 —o 2 —00 —00 —00 —Oo
A= —0c0 —00 —2 —00 —00 —00 —00 —O00
Tl —0 —0 — — —ow 92 —oo —ool|’
—0 —00 —ow —oo —2 —o § — o0
—©0 —0 —00 —w —o —5 —oo 1
— —~00 —00 —00 —0 —o —] —oo
—00 —00 —00 —00 —C0 —00 —O00 —O00
—00 —00 —00 —00 —00 —00 —O00 —O00
—00 —00 —00 —00 —00 —00 —00 —O00
B=| "% —®© —o© —co —c —o —co —oo
Tl -0 —0 —® —® —w —w —o —o
0 —00 —O00 —00 —~00 —O00 —00 —OO
—o —00 —00 —00 —00 —00 —0
— 00 —o0o 0 —00 —00 —O00 —O00 — 0O
—00 —00 —00 —00 —00 —O00 —00 —O00
—00 —0 —00 —00 —0C0 —O00 —O00 —O00
—00 —00 —00 —00 —00 —C0 —00 —O00
ARem| ~® —© —0© -0 —00 —00 —0 —®
Tl —0 —0 —0 —00 — —00 —w —00
0 4 7 9 5 7 1213
-4 0 3 5 1 3 8 9
-7 -3 0 2 -2 0 5 6

We have eigenvalue and eigenvector as follows, A=38§
and x=1(-—4,0,3,5,3,8,9). The ecigenvector define a
stable timely starting schedule. The STSS is ad follows.

Ist MPS X 3rd MPS |

20d MPS |
4

-
1

l a l bl -

TTH =

O T T N O L L VAT I I 2]

a, ‘ b,

a

e

4 3 2 1 0 2

Figure 2. A STSS of Example 1

4. Final Remarks

We have characterized the steady states of an
cyclic shop with time window constraints. To do this,
we have adapt the results of linear system theory. By
introducing a modification of the Petri net model, we
have modeled the time window constraints and were
able to identify the cycle time and the STSSs of the
shop.

It remains to develop an optimization model for
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sequencing using the steady state results. We would
apply and extend this model to the shop with material
handling system such as robot, AGVs, or hoist.

REFERENCES

[1] R.H. Ahmadi and H. Wurgaft, “‘Design for Syn-
chronized Flow  Manufacturing,"  Management
Science, 40 (1994), pp. 1469-1483.

[2] F.L. Baccelli G. Cohen, J.-P. Quadrat and G.J.
Olsder, Synchronization and Linearity, John Wiley
& Sons (1992).

[3] JK. Chaar and E.S. Davidson, "“Cyclic Job Shop
Scheduling  using  Reservation Tables”, The
Proceedings of the 1990 IEEE Int'l Conference on
Robotics and Automation, Cincinnati, Ohio (1990),
pp. 2128- 2135.

[4] R.A. Cuninghame-Green, Minimax Algebra, Springer
-Verlag, New York, NY (1979).

[5] S. Gaubert, 'Theorie Lineaire des Systemes dans
les Dioides", These, Ecole des Mines de Paris,
Paris (1992).

[6] S.C. Graves, H.C. Meal, D. Stefek and A.H.
Zeghmi, ‘'Scheduling of Reentrant Flow Shops,”
Journal of Operations Management, 3 (1983) pp.
197-207.

[7] C. Hanen, “'Study of a NP-hard Cyclic Scheduling
Problem: The Recurrent Job Shop," Furopean
Journal of Operations Research, 72, pp 82-101
(1994).

[8] N.G. Hall, H. Kamoun and C. Sriskandarajah,
“*Scheduling in Robotic Cells: Classification, Two
and Three Machine Cells,” Working Paper, College
of Business, The Ohio State University (1994).

[9] N.G. Hall, T.E. Lee and M.E. Posner, “*Complexity
of Periodic Shop Scheduling Problems,” (Submitted
to Operations Research Letters) (1995).

[10}] K.L. Hitz, “Scheduling of flexible flow shops -
IL," Technical Report LIDS-R-1049, Laboratory for
Information and Decision Systems, M.LT,
Cambridge, Mass (1980).

[11] H. Kamoun and C. Sriskandarajah, “'The
Complexity of Scheduling Jobs in Repetitive
Manufacturing  Systems," European Journal of
Operations Research, 70 (1993), pp.350-364.

[12] S. Karabati and P. Kouvelis, 'The Interface of
Buffer Design and Cyclic Scheduling Decisions in
Deterministic Flow Lines," Annals of Operations
Research, 50 (1994), pp. 295-317.

[13] TE. Lee and M.E. Posner, 'Performance
Measures and Schedule in Periodic Job Shops,"
Operations Research 45-1 (1997), pp. 72 - 91.

[14] T.E. Lee, “Stable Earliest Starting Schedules for
Cyclic Job Shops: A Linedr System Approach,”
Int'l J. of FMS, 12 (2000), pp. 59-80.

[15] H. Matsuo, *“Cyclic Sequencing Problems in the
Two-Machine Permutation Flow Shop: Complexity,

-164-

Worst-case and Average-case Analysis,” Naval

Research Logistics, 37 (1990), pp. 679-6%94.

[16] S.T. McCormick, M.L. Pinedo, S. Shenker, B.
Wolf, *'Sequencing in an Aassembly Line with
Blocking to Minimize Cycle Time," Operations
Research, 37-6 (1989), pp. 925-935.

[17] R. Roundy, “*Cyclic Schedules for Job-Shops with
Identical Jobs," Math. Oper. Res., November
(1992).

[18] S.P. Sethi, C. Sriskandarajah, G. Sorger, J.
Blazewicz and W. Kubiak, ‘‘Sequencing of Parts
and Robot Moves in a Robot Cell," Int'l J of
FMS, 4 (1992), pp. 331-358,



