• 제목/요약/키워드: euler-lagrange equation

검색결과 87건 처리시간 0.029초

이중크랙을 가진 외팔 파이프의 동특성에 미치는 끝단질량과 이동질량의 영향 (Influence of Tip Mass and Moving Mass on Dynamic Behavior of Cantilever Pope with Double-crack)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제15권4호
    • /
    • pp.483-491
    • /
    • 2005
  • In this paper a dynamic behavior of a double-cracked cantilever pipe with the tip mass and a moving mass is presented. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Lagrange's equation. The influences of the moving mass, the tip mass and double cracks have been studied on the dynamic behavior of a cantilever pipe system by numerical method. The cracks section are represented by the local flexibility matrix connecting two undamaged beam segments. Therefore, the cracks are modelled as a rotational spring. This matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. We investigated about the effect of the two cracks and a tip mass on the dynamic behavior of a cantilever pipe with a moving mass.

유체유동 파이프의 안정성에 미치는 크랙의 영향 (Influence of a Crack on Stability of Pipe Conveying Fluid)

  • 안성진;손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.254-257
    • /
    • 2006
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever and simply supported pipe conveying fluid is presented. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

끝단질량과 종동력을 가진 크랙 외팔 보의 안정성 해석 (Stability Analysis of Cracked Cantilever Beam With Tip Mass and Follower Force)

  • 윤한익;손인수;안태수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.99-104
    • /
    • 2007
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever beam with tip mass and follower force is presented. In addition. an analysis of the flutter and buckling instability of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter ins stability based on the variation of the first two resonant frequencies of the beam. Besides. the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

크랙을 가진 유체유동 파이프의 동특성 해석 (Dynamic Behavior of a Simply Supported Fluid Flow Pipe with a Crack)

  • 유진석;손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.689-694
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported pipe conveying fluid subject to the moving mass. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass and the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The presence of crack results in higher deflections of pipe. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow and the crack severity are increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The time which produce the maximum dynamic deflection of the simply supported pipe is delayed according to the increment of the crack severity.

  • PDF

크랙과 이동질량을 가진 유체유동 단순지지 파이프의 동특성에 관한 연구 (A Study on Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack and Moving Mass)

  • 윤한익;진종태;손인수
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.419-426
    • /
    • 2004
  • In this paper, studied about the effect of open crack and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass, the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. Therefore, the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow is increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The position of the crack is located in the middle point of the pipe, the mid-span deflection of simply supported pipe presents maximum deflection.

이중크랙을 가진 단순지지 보의 자유진동 해석 (Free Vibration Analysis of Simply Supported Beam with Double Cracks)

  • 안성진;손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.600-603
    • /
    • 2005
  • In this paper we studied about the effect of the double cracks on the dynamic behavior of a simply supported beam. The equation of motion is derived by using Lagrange's equation and analyzed by numerical method. The simply supported beam is modeled by the Euler-Bernoulli beam theory. The crack section is represented by a local flexibility matrix connecting three undamaged beam segments. The influences of the crack depth and position of each crack on the vibration mode and the natural frequencies of a simply supported beam are analytically clarified. The theoretical results are also validated by a comparison with experimental measurements.

  • PDF

이중크랙을 가진 보의 동특성에 미치는 끝단질량과 이동질량의 영향 (Influence of Tip Mass and Moving Mass on Dynamic Behavior of Beam with Double-Crack)

  • 손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.713-716
    • /
    • 2004
  • In this paper a dynamic behavior of a double-cracked cnatilver beam with a tip mass and the moving mass is presented. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Lagrange's equation. The influences of the moving mass, a tip mass and double cracks have been studied on the dynamic behavior of a cantilever beam system by numerical method. The cracks section are represented by the local flexibility matrix connecting two undamaged beam segments. ,Therefore, the cracks are modelled as a rotational spring. Totally, as a tip mass is increased, the natural frequency of cantilever beam is decreased. The position of the crack is located in front of the cantilever beam, the frequencies of a double-cracked cantilever beam presents minimum frequency.

  • PDF

Vibration of piezo-magneto-thermoelastic FG nanobeam submerged in fluid with variable nonlocal parameter

  • Selvamani Rajendran;Rubine Loganathan;Murat Yaylaci;Ecren Uzun Yaylaci;Mehmet Emin Ozdemir
    • Advances in nano research
    • /
    • 제16권5호
    • /
    • pp.489-500
    • /
    • 2024
  • This paper studies the free vibration analysis of the piezo-magneto-thermo-elastic FG nanobeam submerged in a fluid environment. The problem governed by the partial differential equations is determined by refined higher-order State Space Strain Gradient Theory (SSSGT). Hamilton's principle is applied to discretize the differential equation and transform it into a coupled Euler-Lagrange equation. Furthermore, the equations are solved analytically using Navier's solution technique to form stiffness, damping, and mass matrices. Also, the effects of nonlocal ceramic and metal parts over various parameters such as temperature, Magnetic potential and electric voltage on the free vibration are interpreted graphically. A comparison with existing published findings is performed to showcase the precision of the results.

첨단운전자보조시스템용 이동객체검출을 위한 광학흐름추정기의 설계 및 구현 (Design and Implementation of Optical Flow Estimator for Moving Object Detection in Advanced Driver Assistance System)

  • 윤경한;정용철;조재찬;정윤호
    • 한국항행학회논문지
    • /
    • 제19권6호
    • /
    • pp.544-551
    • /
    • 2015
  • 본 논문에서는 첨단 운전자 보조 시스템 (ADAS; advanced driver assistance system) 용 이동객체검출 (MOD; moving object detection)을 위한 광학흐름추정기 (OFE; optical flow estimator) 의 하드웨어 구조 설계 결과를 제시하였다. 광학흐름추정 알고리즘은 차량 환경에서 높은 정확도를 나타내는 광역 최적화 (global optimization) 기반 Brox 알고리즘을 적용하였다. Brox 알고리즘의 에너지 범함수 (energy functional)를 최소화 하는 과정에서 생성되는 Euler-Lagrange 방정식을 풀기 위해 하드웨어 구현에 용이한 Cholesky factorization이 적용되었으며, 메모리 접근율 (memory access rate)를 줄이기 위해 시프트 레지스터 뱅크 (shift register bank)를 도입하였다. 하드웨어 구현은 Verilog-HDL을 사용하였으며, FPGA 기반 설계 및 검증이 수행되었다. 제안된 광학흐름추정기는 40.4K개의 logic slice 및 155개의 DSP48s, 11,290 Kbit의 block memory로 구현되었다.

관절속도를 가지는 수중로봇팔의 동적 조작도 해석 (Dynamic Manipulability Analysis of Underwater Robotic Arms with Joint Velocities)

  • 전봉환;이지홍;이판묵
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.204-209
    • /
    • 2004
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The Manipulability is a functionality of manipulator system in a given configuration and under the limits of joint ability with respect to the tasks required to bt performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method are presented. The dynamic equation of motion of underwater manipulator is derived from the Lagrange - Euler equation considering with the hydraulic forces caused by added mass, buoyancy and hydraulic drag. The hydraulic drag term in the equation: is established as analytical form using Denavit - Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based on Manipulability Ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torque in joint space while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

  • PDF