• 제목/요약/키워드: eukaryotic

검색결과 514건 처리시간 0.028초

비타민 C와 글루타치온이 수은유도 ROS 생성에 미치는 영향 (Effect of Vitamin C and GSH on the Hg Induced ROS)

  • 권경진;신윤용
    • Environmental Analysis Health and Toxicology
    • /
    • 제23권1호
    • /
    • pp.33-39
    • /
    • 2008
  • The genotoxicity of mercury compounds have been investigated with a variety of genetic endpoints in prokaryotic and eukaryotic cells. The mercury ions are positively charged and easily form complexes with DNA by binding with negatively charged centers to cause mutagenesis. Further, the mercury ions can react with sulfhydryl (-SH) groups of proteins associated with DNA replication and alter genetic information. Another mechanism by which mercury damages DNA molecule is via its probable involvement of reactive oxygen species (ROS) and induces DNA strand breaks. In order to investigate whether the ROS production was induced by mercury, we performed ROS assay. As the result, the ROS production was significantly increased when it grows dose-dependently and time-dependently. We compared mercury alone-treated group and mercury co-treated with Vitamin C or glutathione group. As the result, the ROS production induced by mercury was decreased by Vitamin C and glutathione. Co-treated with Vitamin C and glutathione group was the most effective to lowering ROS production induced by mercury.

Backbone Assignment of the N-terminal Domain of Human Replication Protein A 70 kDa

  • Lee, Sungjin;Park, Chin-Ju
    • 한국자기공명학회논문지
    • /
    • 제20권4호
    • /
    • pp.138-142
    • /
    • 2016
  • Replication Protein A (RPA) is the eukaryotic single-stranded DNA binding protein. It involves in DNA replication, repair, and damage response. Among three subunits, RPA70 has a protein-protein binding domain (RPA70N) at the N-terminal. It has known that the domain recruits several damage response proteins to the damaged site. Also, it is suggested that there are more candidates that interact with RPA70N. Even though several studies performed on the structural aspects of RPA70N and its ligand binding, the backbone assignments of RPA70N is not available in public. In this study, we present the backbone assignments of RPA70N.

RNA-Protein Interactions and Protein-Protein Interactions during Regulation of Eukaryotic Gene Expression

  • Varani, Luca;Ramos, Andres;Cole, Pual T.;Neuhaus, David;Varani, Gabriele
    • 한국자기공명학회논문지
    • /
    • 제2권2호
    • /
    • pp.152-157
    • /
    • 1998
  • The diversity of RNA functions ranges from storage and propagation of genetic information to enzymatic activity during RNA processing and protein synthesis. This diversity of functions requires an equally diverse arrays of structures, and, very often, the formation of functional RNA-protein complexes. Recognition of specific RNA signals by RNA-binding proteins is central to all aspects of post-transcriptional regulation of gene expression. We will describe how NMR is being used to understand at the atomic level how these important biological processes occur.

  • PDF

Isolation. structure. and NF-${\kappa}$B modulatory activity of Harzianum A and B: trichothecene from fungi(B000527)

  • Jin, Hui-Zi;Lee, Jeong-Hyung;Kim, Young-Ho;Lee, Jung-Joon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.320.3-321
    • /
    • 2002
  • Nuclear factor ${\kappa}$B (NF-${\kappa}$B) represents a family of eukaryotic transcription factors participating in the regulation of various cellular genes. Since aberrant regulation of NF-${\kappa}$B has been implicated in the pathogenesis of various diseases including inflammation. asthma. atherosclerosis. AIDS. septic shock. arthritis, and cancer. this transcription factor has been shown to be an interesting target of new drug discovery. (omitted)

  • PDF

Identification and Characterization of Bombyx mori LDH Gene through Bioinformatics Approaches

  • Zhu, Minfeng;Chen, Keping;Yao, Qin
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제15권2호
    • /
    • pp.137-143
    • /
    • 2007
  • Lactate dehydrogenase (LDH) is a ubiquitous enzyme that plays a significant role in the clinical diagnosis of pathologic processes. Discovery of the LDH (BmLDH) gene in B. mori may shed light on its role in the biology of Lepidoptera species, and afford further understanding of the function of the enzyme. In this study, we used the bioinformatics tools to identify LDH gene in B. mori. Sequence analysis showed that BmLDH cDNA contains a 996 bp open reading frame, encoding 331 AA proteins, with seven introns. Compared with hHLDH (human heart LDH), BmLDH contained the same key active sites. Domain search and protein fold recognition analyses provide compelling evidences that the deduced protein is a LDH. Using the computer program MEGA3, we conducted a search for homologs of BmLDH among many eukaryotic species and confirmed that the BmLDH was conserved in all organisms investigated. This gene has been registered in GenBank under the accession number EU000385.

RepWeb: A Web-Based Search Tool for Repeat-Related Literatures

  • Woo, Tae-Ha;Kim, Young-Uk;Kwon, Je-Keun;Seo, Jung-Min
    • Genomics & Informatics
    • /
    • 제5권2호
    • /
    • pp.88-91
    • /
    • 2007
  • Repetitive sequences such as SINE, LINE, and LTR elements form a major part of eukaryotic genomes. A literature search tool that summarizes the information contained within repeat elements would provide biologists in the field of genomics with a useful tool for analyzing genomic sequence features. We developed a java program designed to make literature access easier by using two search engines simultaneously. RepWeb is a web-based search system that provides a user friendly interface for searching the reference data and journals for information related to repeat elements by using the search engines, Google Scholar and PubMed, simultaneously. It provides an interface that displays the repeat element- related biological information, and includes useful functions such as the production of a repeat tree, clickable links to PubMed and Google Scholar, exporting, and sorting a field into date, author, journal and title.

Transposable Elements: No More 'Junk DNA'

  • Kim, Yun-Ji;Lee, Jungnam;Han, Kyudong
    • Genomics & Informatics
    • /
    • 제10권4호
    • /
    • pp.226-233
    • /
    • 2012
  • Since the advent of whole-genome sequencing, transposable elements (TEs), just thought to be 'junk' DNA, have been noticed because of their numerous copies in various eukaryotic genomes. Many studies about TEs have been conducted to discover their functions in their host genomes. Based on the results of those studies, it has been generally accepted that they have a function to cause genomic and genetic variations. However, their infinite functions are not fully elucidated. Through various mechanisms, including de novo TE insertions, TE insertion-mediated deletions, and recombination events, they manipulate their host genomes. In this review, we focus on Alu, L1, human endogenous retrovirus, and short interspersed element/variable number of tandem repeats/Alu (SVA) elements and discuss how they have affected primate genomes, especially the human and chimpanzee genomes, since their divergence.

Human intronless disease associated genes are slowly evolving

  • Agarwal, Subhash Mohan;Srivastava, Prashant K.
    • BMB Reports
    • /
    • 제42권6호
    • /
    • pp.356-360
    • /
    • 2009
  • In the present study we have examined human-mouse homologous intronless disease and non-disease genes alongside their extent of sequence conservation, tissue expression, domain and gene ontology composition to get an idea regarding evolutionary and functional attributes. We show that selection has significantly discriminated between the two groups and the disease associated genes in particular exhibit lower $K_{a}$ and $K_{a}/K_{s}$ while $K_{s}$ although smaller is not significantly different. Our analyses suggest that majority of disease related intronless human genes have homology limited to eukaryotic genomes and their expression is localized. Also we observed that different classes of intronless disease related genes have experienced diverse selective pressures and are enriched for higher level functionality that is essentially needed for developmental processes in complex organisms. It is expected that these insights will enhance our understanding of the nature of these genes and also improve our ability to identify disease related intronless genes.

Nuclear Bodies Built on Architectural Long Noncoding RNAs: Unifying Principles of Their Construction and Function

  • Chujo, Takeshi;Hirose, Tetsuro
    • Molecules and Cells
    • /
    • 제40권12호
    • /
    • pp.889-896
    • /
    • 2017
  • Nuclear bodies are subnuclear, spheroidal, and membraneless compartments that concentrate specific proteins and/or RNAs. They serve as sites of biogenesis, storage, and sequestration of specific RNAs, proteins, or ribonucleoprotein complexes. Recent studies reveal that a subset of nuclear bodies in various eukaryotic organisms is constructed using architectural long noncoding RNAs (arcRNAs). Here, we describe the unifying mechanistic principles of the construction and function of these bodies, especially focusing on liquid-liquid phase separation induced by architectural molecules that form multiple weakly adhesive interactions. We also discuss three possible advantages of using arcRNAs rather than architectural proteins to build the bodies: position-specificity, rapidity, and economy in sequestering nucleic acid-binding proteins. Moreover, we introduce two recently devised methods to discover novel arcRNA-constructed bodies; one that focuses on the RNase-sensitivity of these bodies, and another that focuses on "semi-extractability" of arcRNAs.

Growth of Budding Yeasts under Optical Trap

  • Im, Kang-Bin;Kim, Hyun-Ik;Kim, Soo-Ki;Kim, Chul-Geun;Oh, Cha-Hwan;Song, Seok-Ho;Kim, Pill-Soo
    • Molecular & Cellular Toxicology
    • /
    • 제3권1호
    • /
    • pp.19-22
    • /
    • 2007
  • Optic tweezer is powerful tool to investigate biologic cells. Of eukaryotic cells, it was poorly documented regarding to optic trapping to manipulate yeasts. In preliminary experiment to explore yeast biology, interferometric optical tweezers was exploited to trap and manipulate budding yeasts. Successfully, several budding yeasts are trapped simultaneously. We found that the budding direction of the daughter cell was almost outward and the daughter cell surrounded by other yeasts grows slowly or fail to grow. Thus it was assumed that neighboring cells around budding yeast may be critical in budding and the growth of daughter cells. This is first report pertaining to the pattern of yeast budding under the optical trap when multiple yeasts were trapped.