• Title/Summary/Keyword: etoposide

Search Result 150, Processing Time 0.027 seconds

Effects of Naringin on the Bioavailability of Etoposide in Rats

  • Choi, Byung-Chul;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.5
    • /
    • pp.313-317
    • /
    • 2008
  • This study investigated the effect of naringin, a flavonoid, on the bioavailability of etoposide administered orally to rats. Etoposide (6 mg/kg) was administered orally to rats alone or with naringin (1, 4 or 12 mg/kg). Compared with the control group, the co-administration of etoposide with 4 and 12 mg/kg of naringin significantly (p<0.05) increased the area under the plasma concentration-time curve (AUC) and the peak plasma concentration ($C_{max}$) of the oral etoposide. Consequently, the absolute bioavailability (AB) of etoposide in the presence (4 and 12 mg/kg) of naringin was significantly (p<0.05) increased by $9.4{\sim}10.6%$ compared with the control group (7.4%). The relative bioavailability (RB) of etoposide was increased 1.13- to 1.44-fold compared to the control group. Enhanced bioavailability of etoposide might be due to inhibition of both cytochrome P450 (CYP) 3A4 in the intestine or liver and P-glycoprotein (P-gp) transport efflux of etoposide in the intestinal membrane. This data indicate that careful consideration of the dosage for therapy with etoposide is required in a case of clinical application of the co-administration of etoposide and naringin.

Anti-apoptotic Activity of Heme Oxygenase-1 Up-regulated by Etoposide in Human Retinal Pigment Epithelial Cells (Etoposide에 의한 인간 망막색소상피세포인 ARPE-19 세포의 아폽토시스 과정에서 Heme oxygenase-1의 항아폽토시스 기능에 대한 연구)

  • Lee, Sang-Kwon;Song, Ju-Dong;Kim, Kang-Mi;Kim, Jong-Min;Lee, Sang-Yull;Yoo, Young-Hyun;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1204-1210
    • /
    • 2007
  • The topoisomerase II inhibitor etoposide causes an accumulation of DNA double strand breaks within the nuclei of cells. In this study, we investigated the effect of etoposide on the cell growth and apoptosis of human RPE cells. Etoposide evoked a significant inhibition of cell growth, and also induced DNA fragmentation in ARPE-19 cells. In addition, etoposide significantly up-regulated the expression of heme oxygenase-1 (HO-1), which is a stress-responsive protein and is known to play a protective role against the oxidative injury. And, etoposide-induced HO-1 expression was affected by the ROS scavenger N-acetyl cysteine. We also used oligonucleotides interfering with HO-1 mRNA (siRNA) for the inhibition of HO-1 expression. Interestingly, knock-down of the HO-1 gene significantly increased the level of DNA fragmentation in etoposide-treated ARPE-19 cells. In conclusion, these results suggest that up-regulated HO-1 plays as an anti-apoptotic factor in the process of apoptosis of ARPE-19 cells stimulated by etoposide.

Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death

  • Woo, Sung-Hun;Kim, Bohee;Kim, Sung Hoon;Jung, Byung Chul;Lee, Yongheum;Kim, Yoon Suk
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.148-153
    • /
    • 2022
  • Etoposide is a chemotherapeutic medication used to treat various types of cancer, including breast cancer. It is established that pulsed electromagnetic field (PEMF) therapy can enhance the effects of anti-cancer chemotherapeutic agents. In this study, we investigated whether PEMFs influence the anti-cancer effects of etoposide in MCF-7 cells and determined the signal pathways affected by PEMFs. We observed that co-treatment with etoposide and PEMFs led to a decrease in viable cells compared with cells solely treated with etoposide. PEMFs elevated the etoposide-induced PARP cleavage and caspase-7/9 activation and enhanced the etoposide-induced down-regulation of survivin and up-regulation of Bax. PEMF also increased the etoposide-induced activation of DNA damage-related molecules. In addition, the reactive oxygen species (ROS) level was slightly elevated during etoposide treatment and significantly increased during co-treatment with etoposide and PEMF. Moreover, treatment with ROS scavenger restored the PEMF-induced decrease in cell viability in etoposide-treated MCF-7 cells. These results combined indicate that PEMFs enhance etoposide-induced cell death by increasing ROS induction-DNA damage-caspase-dependent apoptosis.

Anti-apoptotic Effects of Terrein on Etoposide-induced Apoptosis of U937 Human Leukemia Cells (Terrein의 etoposide에 의해 유도된 apoptosis 저해효과)

  • 이충환;이호재;김진희;김현아;고영희
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.2
    • /
    • pp.87-91
    • /
    • 2000
  • In the course of screening for the substances inhibiting apoptosis ofU937 human leukemia cell induced by etoposide, a fungal strain F80834 producing a high level of inhibitor was selected. The inhibitory substance was purified and identified as terrein by spectroscopic methods of UV, EI-MS, IH-NMR, 13C-NMR and DEPT. Terrein showed inhibitory activity of caspase 3, a major protease of apoptosis cascade, with an $IC_{50}$ value of $20\mu\textrm{g}/ml$ after 7 hrs of treatment. It also showed protective effect against cell death with an $IC_{50}$ value of $10\mu\textrm{g}/ml$ on U937 cells induced by etoposide after 24 hrs of treatment, but did not show any cytotoxicity at the same condition without etoposide.

  • PDF

Apoptotic Response of Human Oral Squamous Carcinoma Cells to Etoposide (Etoposide에 대한 사람구강편평상피암종세포의 세포자멸사 반응)

  • Kim, Gyoo-Cheon;Lee, Kyoung-Duk;Park, Jae-Hyun;Kim, Duk-Han;Park, Jeong-Kil;Park, June-Sang;Park, Bong-Soo
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.2
    • /
    • pp.231-238
    • /
    • 2005
  • Anti-cancer drugs have been shown to target diverse cellular functions in mediation cell death in chemosensitive tumors. Most antineoplastic drugs used in chemotherapy of leukemias and solid tumors induce apoptosis in drug-sensitive target cells. However, the precise molecular requirements that are central for drug-induced cell death are largely unknown. Etoposide is used for the treatment of lung and testicular cancer. This study was performed to examine whether etoposide promote apoptosis in human oral squamous carcinoma cells (OSC9) as well as in lung and testicular cancer. Etoposide had a significant dose- and time-dependent inhibitory effect on the viability of OSC9 cells. TUNEL assay showed the positive reaction on condensed nuclei. Hoechst stain demonstrated that etoposide induced a change in nuclear morphology. The expression of p53 was increased at 48 hour, suggesting that the nuclear of OSC9 cell was damaged, thereby inducing apoptosis. Etoposide treatment induced caspase-3 cleavage and activation. Intact PARP protein 116-kDa and 85-kDa cleaved product were observed. The activated caspase-3 led cleavage of the PARP. These results demonstrate that etoposide-induced apoptosis in OSC9 cells is associated with caspase-3 activation.

Release of Cytochrome c from Isolated Mitochondria by Etoposide

  • Park, Jung-Hee;Kim, Tae-Hyoung
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.619-623
    • /
    • 2005
  • The efficacy of chemotherapeutic agents on tumor cells has been shown to be modulated by tumor suppressor gene p53 and its target genes such as Bcl-2 family members (Bax, Noxa, and PUMA). However, various chemotherapeutic agents can induce cell death in tumor cells that do not express the functional p53, suggesting that some chemotherapeutic agents may induce cell death in a p53-independent pathway. Here we showed that etoposide can induce the similar degree of cell death in p53-deficient HCT 116 cells, whereas 5'-FU-mediated cell death is strongly dependent on the existence of functional p53 in HCT 116 cells. Further, we provide the evidence that etoposide can induce the cytochrome c release from isolated mitochondria, and etoposide-induced cytochrome c release is not accompanied with the large amplitude swelling of mitochondria. These data suggest that etoposide can directly induce the mitochondrial dysfunction irrespective of p53 status, and it may, at least in part, account for the p53-independent pathway in cell death induced by chemotherapeutic agents.

A Case of Anaphylaxis after the Treatment with Etoposide in a Patient with Small Cell Lung Cancer (소세포폐암에서 Etoposide 투여 후 발생한 아나필락시스 1예)

  • Kim, Young-Il;Kim, Kyu-Sik;Han, Eui-Ryoung;Kwan, Yong-Soo;Oh, In-Jae;Lim, Sung-Chul;Kim, Young-Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.2
    • /
    • pp.145-147
    • /
    • 2009
  • Etoposide is a semi-synthetic derivative of podophyllotoxin that is effective against many cancers including small cell lung cancer. We report a case of etoposide-induced anaphylaxis in a 51-year-old woman who tolerated etoposide during her first cycle chemotherapy regimen. During the second cycle, she complained of generalized urticaria and dyspnea 5 minutes after being infused with etoposide. She recovered completely with antihistamine, corticosteroid and fluid replacement. The intradermal skin test with etoposide showed a clear positive immediate reaction. This case suggests that etoposide can induce IgE-mediated anaphylaxis.

Mithramycin Inhibits Etoposide Resistance in Glucose-deprived HT-29 Human Colon Carcinoma Cells

  • Lee, Eun-Mi;Park, Hae-Ryong;Hwang, Ji-Hwan;Park, Dong-Jin;Chang, Kyu-Seob;Kim, Chang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1856-1861
    • /
    • 2007
  • Physiological cell conditions such as glucose deprivation and hypoxia play roles in the development of drug resistance in solid tumors. These tumor-specific conditions cause decreased expression of DNA topoisomerase $II{\alpha}$, rendering cells resistant to topo II target drugs such as etoposide. Thus, targeting tumor-specific conditions such as a low glucose environment may be a novel strategy in the development of anticancer drugs. On this basis, we established a novel screening program for anticancer agents with preferential cytotoxic activity in cancer cells under glucose-deprived conditions. We recently isolated an active compound, AA-98, from Streptomyces sp. AA030098 that can prevent stress-induced etoposide resistance in vitro. Furthermore, LC-MS and various NMR spectroscopic methods identified AA-98 as mithramycin, which belongs to the aureolic acid group of antitumor compounds. We found that mithramycin prevents the etoposide resistance that is induced by glucose deprivation. The etoposide-chemosensitive action of mithramycin was just dependent on strict low glucose conditions, and resulted in the selective cell death of etoposide-resistant HT-29 human colon cancer cells.

The Association of Increased Lung Resistance Protein Expression with Acquired Etoposide Resistance in Human H460 Lung Cancer Cell Lines

  • Lee, Eun-Myong;Lim, Soo-Jeong
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.1018-1023
    • /
    • 2006
  • Chemoresistance remains the major obstacle to successful therapy of cancer. In order to understand the mechanism of multidrug resistance (MDR) that is frequently observed in lung cancer patients, here we studied the contribution of MDR-related proteins by establishing lung cancer cell lines with acquired resistance against etoposide. We found that human H460 lung cancer cells responded to etoposide more sensitively than A549 cells. Among MDR-related proteins, the expression of p-glycoprotein (Pgp) and lung resistance protein (LRP) were much higher in A549 cells compared with that in H460 cells. When we established H460-R1 and -R2 cell lines by progressive exposure of H460 cells to increasing doses of etoposide, the response against etopbside as well as doxorubicin was greatly reduced in R1 and R2 cells, suggesting MDR induction. Induction of MDR was not accompanied by a decrease in the intracellular accumulation of etoposide and the expression of MDR-related proteins that function as drug efflux pumps such as Pgp and MRP1 was not changed. We found that the acquired resistance paralleled an increased expression of LRP in H460 cells. Taken together, our data suggest the implicative role of LRP in mediating MDR in lung cancer.

Distinct Roles for JNK1 and JNK3 During TNF-α- or Etoposide-Induced Apoptosis in HeLa Cells

  • Ham, Young-Mi;Lim, Jin-Hee;Lee, Seung-Ki
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.509-513
    • /
    • 2009
  • Here, we show that JNK1 and JNK3 have different roles in ${\alpha}-$ or etoposide-induced apoptosis in HeLa cells. Dominant negative JNK1 inhibited $TNF-{\alpha}-$ or etoposide-induced apoptosis, while dominant negative JNK3 promoted $TNF-{\alpha}-$ or etoposide-induced apoptosis. During $TNF-{\alpha}$-induced apoptosis, JNK1 was activated in a biphasic manner, exhibiting both transient and sustained activity, whereas JNK3 was activated early and in a transient manner. The role of JNK3 activation was an anti-apoptotic effect, while the role of JNK1 activation was a pro-apoptotic effect. These results suggest that the anti-apoptotic mechanism of JNK3 in $TNF-{\alpha}$-induced apoptosis originates before the apoptotic machinery is triggered.