DOI QR코드

DOI QR Code

Release of Cytochrome c from Isolated Mitochondria by Etoposide

  • Park, Jung-Hee (Department of Biochemistry, Chosun University School of Medicine) ;
  • Kim, Tae-Hyoung (Department of Biochemistry, Chosun University School of Medicine)
  • Published : 2005.09.30

Abstract

The efficacy of chemotherapeutic agents on tumor cells has been shown to be modulated by tumor suppressor gene p53 and its target genes such as Bcl-2 family members (Bax, Noxa, and PUMA). However, various chemotherapeutic agents can induce cell death in tumor cells that do not express the functional p53, suggesting that some chemotherapeutic agents may induce cell death in a p53-independent pathway. Here we showed that etoposide can induce the similar degree of cell death in p53-deficient HCT 116 cells, whereas 5'-FU-mediated cell death is strongly dependent on the existence of functional p53 in HCT 116 cells. Further, we provide the evidence that etoposide can induce the cytochrome c release from isolated mitochondria, and etoposide-induced cytochrome c release is not accompanied with the large amplitude swelling of mitochondria. These data suggest that etoposide can directly induce the mitochondrial dysfunction irrespective of p53 status, and it may, at least in part, account for the p53-independent pathway in cell death induced by chemotherapeutic agents.

Keywords

References

  1. Abeysinghe, R. D., Greene, B. T., Haynes, R., Willingham, M. C., Turner, J., Planalp, R. P., Brechbiel, M. W., Torti, F. M. and Torti, S. V. (2001) p53-independent apoptosis mediated by tachpyridine, an anti-cancer iron chelator. Carcinogenesis 22, 1607-1614 https://doi.org/10.1093/carcin/22.10.1607
  2. Brustovetsky, N., Brustovetsky, T., Jemmerson, R. and Dubinsky, J. M. (2002) Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J. Neurochem. 80, 207-218 https://doi.org/10.1046/j.0022-3042.2001.00671.x
  3. Bunz, F., Hwang, P. M., Torrance, C., Waldman, T., Zhang, Y., Dillehay, L., Williams, J., Lengauer, C., Kinzler, K. W. and Vogelstein, B. (1999) Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. 104, 263-269 https://doi.org/10.1172/JCI6863
  4. Carson, D. A. and Lois, A. (1995) Cancer progression and p53. Lancet 346, 1009-1011 https://doi.org/10.1016/S0140-6736(95)91693-8
  5. Cassarino, D. S., Parks, J. K., Parker, W. D. Jr. and Bennett, J. P. Jr. (1999) The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim. Biophys. Acta 1453, 49-62 https://doi.org/10.1016/S0925-4439(98)00083-0
  6. Fujiwara, T., Grimm, E. A., Mukhopadhyay, T., Cai, D. W., Owen-Schaub, L. B. and Roth, J. A. (1993) A retroviral wildtype p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis. Cancer Res 53, 4129-4133
  7. Galmarini, C. M., Kamath, K., Vanier-Viornery, A., Hervieu, V., Peiller, E., Falette, N., Puisieux, A., Ann Jordan, M. and Dumontet, C. (2003) Drug resistance associated with loss of p53 involves extensive alterations in microtubule composition and dynamics. Br. J. Cancer 88, 1793-1799 https://doi.org/10.1038/sj.bjc.6600960
  8. Kho, P. S., Wang, Z., Zhuang, L., Li, Y., Chew, J. L., Ng, H. H., Liu, E. T. and Yu, Q. (2004) p53-regulated transcriptional program associated with genotoxic stress-induced apoptosis. J. Biol. Chem. 279, 21183-21192 https://doi.org/10.1074/jbc.M311912200
  9. Kim, T. H., Zhao, Y., Barber, M. J., Kuharsky, D. K. and Yin, X. M. (2000) Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial permeability transition pore and Bax. J. Biol. Chem. 275, 39474-39481 https://doi.org/10.1074/jbc.M003370200
  10. Kim, T. H., Zhao, Y., Ding, W. X., Shin, J. N., He, X., Seo, Y. W., Chen, J., Rabinowich, H., Amoscato, A. A. and Yin, X. M. (2004) Bid-cardiolipin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome C release. Mol. Biol. Cell. 15, 3061-3072 https://doi.org/10.1091/mbc.E03-12-0864
  11. Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green, D. R. and Newmeyer, D. D. (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331-342 https://doi.org/10.1016/S0092-8674(02)01036-X
  12. Lanni, J. S., Lowe, S. W., Licitra, E. J., Liu, J. O. and Jacks, T. (1997) p53-independent apoptosis induced by paclitaxel through an indirect mechanism. Proc. Natl. Acad. Sci. USA 94, 9679-9683
  13. Leu, J. I., Dumont, P., Hafey, M., Murphy, M. E. and George, D. L. (2004) Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcll complex. Nat. Cell. Biol. 6, 443-450 https://doi.org/10.1038/ncb1123
  14. Lowe, S. W., Ruley, H. E., Jacks, T. and Housman, D. E. (1993a) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957-967 https://doi.org/10.1016/0092-8674(93)90719-7
  15. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. and Jacks, T. (1993b) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847-849 https://doi.org/10.1038/362847a0
  16. Lowe, S. W., Bodis, S., McClatchey, A., Remington, L., Ruley, H. E., Fisher, D. E., Housman, D. E. and Jacks, T. (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266, 807-810 https://doi.org/10.1126/science.7973635
  17. Lutter, M., Fang, M., Luo, X., Nishijima, M., Xie, X. and Wang, X. (2000) Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat. Cell. Biol. 2, 754-761 https://doi.org/10.1038/35036395
  18. Marchini, S., Ciro, M. and Broggini, M. (1999) P53-independent caspase-mediated apoptosis in human leukaemic cells is induced by a DNA minor groove binder with antineoplastic activity. Apoptosis 4, 39-45 https://doi.org/10.1023/A:1009630132087
  19. Nakano, K. and Vousden, K. H. (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 7, 683-694 https://doi.org/10.1016/S1097-2765(01)00214-3
  20. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T. and Tanaka, N. (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058 https://doi.org/10.1126/science.288.5468.1053
  21. Petit, T., Bearss, D. J., Troyer, D. A., Munoz, R. M. and Windle, J. J. (2003) p53-independent response to cisplatin and oxaliplatin in MMTV-ras mouse salivary tumors. Mol. Cancer Ther. 2, 165-171
  22. Petronilli, V., Cola, C., Massari, S., Colonna, R. and Bernardi, P. (1993) Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. J. Biol. Chem. 268, 21939-21945
  23. Ravi, R. and Bedi, A. (2002) Requirement of BAX for TRAIL/Apo2L-induced apoptosis of colorectal cancers: synergism with sulindac-mediated inhibition of Bcl-x(L). Cancer Res. 62, 1583-1587
  24. Seo, Y. W., Shin, J. N., Ko, K. H., Cha, J. H., Park, J. Y., Lee, B. R., Yun, C. W., Kim, Y. M., Seol, D. W., Kim, D. W., Yin, X. M. and Kim, T. H. (2003) The molecular mechanism of Noxainduced mitochondrial dysfunction in p53-mediated cell death. J. Biol. Chem. 278, 48292-48299 https://doi.org/10.1074/jbc.M308785200
  25. Seol, D. W. and Billiar, T. R. (2000) Cysteine 230 modulates tumor necrosis factor-related apoptosis-inducing ligand activity. Cancer Res. 60, 3152-3154
  26. Song, J. H., Song, D. K., Pyrzynska, B., Petruk, K. C., Van Meir, E. G. and Hao, C. (2003) TRAIL triggers apoptosis in human malignant glioma cells through extrinsic and intrinsic pathways. Brain Pathol. 13, 539-553 https://doi.org/10.1111/j.1750-3639.2003.tb00484.x
  27. Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W. and Vogelstein, B. (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell. 7, 673-682 https://doi.org/10.1016/S1097-2765(01)00213-1
  28. Zhang, L., Yu, J., Park, B. H., Kinzler, K. W. and Vogelstein, B. (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290, 989-992 https://doi.org/10.1126/science.290.5493.989

Cited by

  1. Overexpression of optic atrophy 1 protein increases cisplatin resistance via inactivation of caspase-dependent apoptosis in lung adenocarcinoma cells vol.43, pp.1, 2012, https://doi.org/10.1016/j.humpath.2011.04.012
  2. Mitochondrial dysfunction induced by different concentrations of gadolinium ion vol.100, 2014, https://doi.org/10.1016/j.chemosphere.2013.11.031
  3. Dexamethasone inhibits apoptosis in C6 glioma cells through increased expression of Bcl-XL vol.11, pp.7, 2006, https://doi.org/10.1007/s10495-006-7233-1
  4. Inhibition of autophagy by 3-MA potentiates purvalanol-induced apoptosis in Bax deficient HCT 116 colon cancer cells vol.328, pp.1, 2014, https://doi.org/10.1016/j.yexcr.2014.07.022
  5. Canonical and new generation anticancer drugs also target energy metabolism vol.88, pp.7, 2014, https://doi.org/10.1007/s00204-014-1246-2
  6. QS-ZYX-1-61 induces apoptosis through topoisomerase II in human non-small-cell lung cancer A549 cells vol.103, pp.1, 2012, https://doi.org/10.1111/j.1349-7006.2011.02103.x
  7. Enhanced intestinal absorption of etoposide by self-microemulsifying drug delivery systems: Roles of P-glycoprotein and cytochrome P450 3A inhibition vol.50, pp.3-4, 2013, https://doi.org/10.1016/j.ejps.2013.08.016