• Title/Summary/Keyword: ethylene response

Search Result 134, Processing Time 0.026 seconds

Effects of 2. 4-Dichlorophenoxyacetic Acid on the Growth Response and Fruit Quality of Strawberry (2. 4-Dichlorophenoxyacetic Acid 처리가 딸기의 생장반응 및 과실품질 향상에 미치는 영향)

  • 강양순;양의석;정연태
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.3
    • /
    • pp.353-356
    • /
    • 1987
  • To find out the effect of 2.4-D on growth response and fruit quality of strawberry, by leaf treatment (spray) of 120l/10a of 2.4-D(amine salt 40%) 10 ppm solution at flowering stage of 1st cluster, the experiment was carried out in the P-E film covered green-house. The strawberry plant showed the epinastic growing response with long petiole and petide and increased the evolution of ethylene from leaves and fruits after 2.4-D spraying. Therefore, the peak of picking time was accerated about 15 days according to the higher amount of ethylene evolution from strawberry plants, and the yield of fruit increased about 18% by improving the average weight of a fruit.

  • PDF

Response to Plant Hormones of Senescence-related Genes for Cucumis sativus L. in Cotyledon Development (오이 떡잎에서 노쇠화 관련 유전자들의 식물 호르몬에 대한 반응 연구)

  • Cha, Hyeon Jeong;Kim, Dae-Jae
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.895-903
    • /
    • 2016
  • This study was carried out to discover the response of cucumber (Cucumis sativus L.) senescence- associated genes (SAGs) to several plant hormones in detached and developing cotyledon. Accordingly, a collection of cucumber SAGs were examined to characterize their gene expression response through semi-quantitative RT-PCR. Cotyledons were excised at day 14 after seed sowing from plantlets, then incubated in 100 μM each of IAA or zeatin solution for up to 4 days in light and darkness. They were collected at 2-day intervals and used for total RNA extraction and subjected to RT-PCR. Gene expression levels of several cucumber SAGs were significantly changed during the incubation period. More than five cucumber SAGs involving SAG 60 responded to the IAA and zeatin treatment. In the ethylene response study, cotyledons were exposed up to 10 days by ethylene gas. Most of the cucumber SAGs did not show immediate response to ethylene in green cotyledon. The exceptions were PCK, SAG 158, and SAG 288 genes, which responded after 1 day of exposure to green cotyledon, while ICL and SAG 281 revealed strong responses after 10 days of being exposed to yellowing cotyledon. These results suggest that several cucumber SAGs react actively in response to starvation or senescence against exogenously applied stimulus. This induced senescence response is able to understand the SAGs role in lipids and amino acids metabolism partly and function in organ senescence during development.

The Arabidopsis AtLEC Gene Encoding a Lectin-like Protein Is Up-Regulated by Multiple Stimuli Including Developmental Signal, Wounding, Jasmonate, Ethylene, and Chitin Elicitor

  • Lyou, Seoung Hyun;Park, Hyon Jin;Jung, Choonkyun;Sohn, Hwang Bae;Lee, Garam;Kim, Chung Ho;Kim, Minkyun;Choi, Yang Do;Cheong, Jong-Joo
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.75-81
    • /
    • 2009
  • The Arabidopsis gene AtLEC (At3g15356) gene encodes a putative 30-kDa protein with a legume lectin-like domain. Likely to classic legume lectin family of genes, AtLEC is expressed in rosette leaves, primary inflorescences, and roots, as observed in Northern blot analysis. The accumulation of AtLEC transcript is induced very rapidly, within 30 min, by chitin, a fungal wall-derived oligosaccharide elictor of the plant defense response. Transgenic Arabidopsis carrying an AtLEC promoter-driven ${\beta}$-glucuronidase (GUS) construct exhibited GUS activity in the leaf veins, secondary inflorescences, carpel heads, and silique receptacles, in which no expression could be seen in Northern blot analysis. This observation suggests that AtLEC expression is induced transiently and locally during developmental processes in the absence of an external signal such as chitin. In addition, mechanically wounded sites showed strong GUS activity, indicating that the AtLEC promoter responds to jasmonate. Indeed, methyl jasmonate and ethylene exposure induced AtLEC expression within 3-6 h. Thus, the gene appears to play a role in the jasmonate-/ethylene-responsive, in addition to the chitin-elicited, defense responses. However, chitin-induced AtLEC expression was also observed in jasmonate-insensitive (coi1) and ethylene-insensitive (etr1-1) Arabidopsis mutants. Thus, it appears that chitin promotes AtLEC expression via a jasmonate- and/or ethylene-independent pathway.

Effect of Inhibitors of Ethylene Production on Growth and Gravitropism Inhibited by Oryzalin in Arabidopsis Roots (애기장대 뿌리에서 ethylene 생성 억제제가 oryzalin에 의해 억제된 뿌리 생장과 굴중성 반응에 미치는 영향)

  • Park, Ho Yeon;Ahn, Donggyu;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.280-286
    • /
    • 2021
  • Oryzalin is a herbicide that disrupts the arrangement of microtubules by binding to tubulin, thereby blocking the anisotropic growth of plant cells. Microtubules and microfilaments are cytoskeleton components that have been implicated in plant growth through their influence on the formation of cell walls. Microtubules also play roles in the sedimentation of amyloplasts in the root tip columella cells; this sedimentation is related to gravity sensing and results in downward root growth in the soil for absorption of water and minerals. However, the orientation of microtubules changes depending on the level of ethylene in plant cells. A recent study reported that oryzalin stimulated ethylene production via 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase and caused a concentration-dependent inhibition of root growth and gravitropic responses. The aim of the present study was to investigate the possibility that oryzalin-induced inhibition might be recovered by the application of inhibitors of ethylene production, such as 10-4 M cobalt ions and 10-8 M aminoethoxyvinylglycine (AVG). The inhibition of root growth and gravitropic response was overcome by 10-20% by an 8 hr treatment with cobalt ions or AVG. These results suggest that ethylene levels could regulate root growth and gravitropic responses in Arabidopsis.

Response of Korean Ginseng (Panax ginseng C. A. Meyer) to 2, 4- D II. Effects of 2, 4-D Foliar Application on Photosynthesis, Ethylene Gas Production and Plant Growth (제초제 2, 4-D에 대한 고려인삼의 반응 II. 2, 4-D의 경엽처리가 인삼엽의 광합성, 에칠렌가스 발생 및 지상부 생육에 미치는 영향)

  • 조재성;원준연;신최순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.2
    • /
    • pp.107-111
    • /
    • 1991
  • This study was conducted to define the effect of 2, 4-D foliar application on the plant growth. photosynthesis ability and ethylene gas production of the ginseng plant. Neither abnomal foliar changes occured nor any inhibition in the leaf and stem growth was resulted for the plants treated with 2,4-D concentrated three times of the recommended dosage. The angle of petiole to the stem became wider by 2, 4-D foliar application. The higher concentration treatment of 2,4-D made the petiole angle significantly wider. Foliar application of the herbicide 2,4-D inhibited photosynthesis of the ginseng leaf. The inhibition rate of photosynthesis was significantly increased with the application concentration of 2, 4-D. Inhibition in photosyn-thesis ability by 2,4-D application with doubled concentration was recovered in three days after treatment. When 2,4-D was treated with a concentration tripled the recommended dosage, 12 days were needed to recover the photosynthesis ability of the ginseng leaf. Ethylene gas was not detected from the ginseng plants treated with 2 times concentrated 2, 4-D. However, the ginseng plants produced 0.03-0.04 ppm ethylene gas when the application rate was increased 3 times. The amount of ethylene gas produced by ginseng plant treated with 3 times concentrated 2, 4-D was only 1/20 compared with the amount produced by the soybean plant treated with the recommended dosage of 2, 4-D.

  • PDF

Exogenous Sugars Involvement in Senescence and Ethylene Production of Tree Peony 'Luoyang Hong' Cut Flowers

  • Zhang, Chao;Liu, Miao;Fu, Jianxin;Wang, Yanjie;Li, Dong
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.718-724
    • /
    • 2012
  • Sugars play important roles in petal senescence of cut flowers. In the Expt. 1 of this study, the effects of different concentrations of glucose (60, 90, and $120g{\cdot}L^{-1}$) and sucrose (30, 60, and $90g{\cdot}L^{-1}$) application on the vase life, rate of flower diameter increase, rate of flower weight increase and ethylene production of cut tree peony (Paeonia suffruticosa 'Luoyang Hong') were evaluated. At the earlier stage, treatments of different concentrations of glucose and sucrose all retarded the process of flower opening and inhibited the increase of flower diameter and weight, while senescence of flowers fed with different concentrations of glucose was delayed at later stage. Flowers treated with $90g{\cdot}L^{-1}$ glucose displayed the longest vase life, which showed significant difference (P < 0.05) from those of flowers with the control and sucrose treatments. All treatments with glucose or sucrose not only retarded the decrease of flower diameter and weight, but also suppressed the ethylene production at the earlier stage and delayed the peak of ethylene evolution. In order to study the effect of exogenous sugar on the postharvest response of cut tree peony to ethylene, Expt. 2 was conducted. Cut flowers were treated with $90g{\cdot}L^{-1}$ glucose for 4 hours before (GE) or after (EG) exposed to $10{\mu}L{\cdot}L^{-1}$ ethylene for 4 hours. Generally, the opening process of flowers with GE and EG treatments was similar to that of the control, however GE treatment delayed flower senescence. Both GE and EG treatments improved flower diameter and weight, and GE treatment delayed the time of flower weight decrease. Besides, GE delayed climacteric ethylene evolution for 8 hours. All above suggest that exogenous sugars delay tree peony 'Luoyang Hong' cut flower senescence and extend flower vase life through their roles in the decrease of water loss and the suppression of sensitivity to ethylene and ethylene production.

Arabidopsis thaliana의 Ethylene Triple Response Mutant에서 에틸렌 생합성 과정의 생리 생화학적 특성

  • 이준승
    • Journal of Plant Biology
    • /
    • v.39 no.1
    • /
    • pp.31-40
    • /
    • 1996
  • The physiological and biochemical characterizations of the ethylene-related mutants in Arabidopsis thaliana - ethylene overproducing mutant (eto1-l) and ethylene insensitive mutants (etrl-3, ein2-l) - were detailed in this studies. Two or three week.old mature rosette leaves (before bolting) were used as the plant materials. Ethylene productions of eto1-l, etrl-3, and ein2-l mutants were about 200%, 400%, and 450% compared to that of wild type, respectively. ACC synthase and ACC oxidase activities of eto1-l mutant were similar to those of wild type. ACC content and ACC N-malonyltransferase activity, however, were 4.5 times and 3 times higher than those of wild type, respectively. SAM synthetase activity increased by 50% in eto1-l mutant plant. These results indicated that the alteration in the eto1-l mutant occured before the step of the conversion of SAM to ACe. In etrl-3 and ein2-l mutants, ACC synthase activities increased, but ACC oxidase activities decreased. ACC content and ACC N-malonyltransfcrase activity were 2 times higher than those of wild type. SAM synthetase activity in etrl-3 is similar to those of wild type, while it increased by 73% in ein2-l. These results showed that the block in ethylene action affected the autoregulation of ethylene biosynthesis, so that ACC synthase activity was not autoinhibited and ACC oxidase activity was not auto stimulated by ethylene. When the leaf tissues were used for in vitro kinase assay, a cytosolic protein (approximately 36 kDa) was phosphorylated only in eto1-l and ein2-l mutants.utants.

  • PDF

Molecular Characterization of a Transient Expression Gene Encoding for 1-Aminocyclopropane-1-carboxylate Synthase in Cotton (Gossypium hirsutum L.)

  • Wang, Xia;Zhang, Ying;Zhang, Jiedao;Cheng, Cheng;Guo, Xingqi
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.791-800
    • /
    • 2007
  • Ethylene performs an important function in plant growth and development. 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), the key enzyme involved in ethylene biosynthesis, has been the focus of most ethylene studies. Here, a cotton ACS gene referred to as Gossypium hirsutum ACS1 (GhACS1), was isolated. The full-length cDNA of GhACS1 encodes for a 476-amino acid protein which harbors seven conserved regions, 11 invariant amino acid residues, and the PLP binding active site, all of which characterize ACC synthases. Alignment analysis showed that GhACS1 shared a high degree of identity with other known ACC synthases from different species. Two introns were detected in the genomic DNA sequence, and the results of Southern blot analysis suggested that there might be a multi-gene family encoding for ACC synthase in cotton. From the phylogenetic tree constructed with 24 different kinds of ACC synthases, we determined that GhACS1 falls into group II, and was closely associated with the wound-inducible ACS of citrus. The analysis of the 5' flanking region of GhACS1 revealed a group of putative cis-acting elements. The results of expression analysis showed that GhACS1 displayed its transient expression nature after wounding, abscisic acid (ABA), and $CuCl_2$ treatments. These results indicate that GhACS1, which was transiently expressed in response to certain stimuli, may be involved in the production of ethylene for the transmission of stress signals.

ACC Deaminase Producing Arsenic Tolerant Bacterial Effect on Mitigation of Stress Ethylene Emission in Maize Grown in an Arsenic Polluted Soil

  • Shagol, Charlotte C.;Subramanian, Parthiban;Krishnamoorthy, Ramasamy;Kim, Kiyoon;Lee, Youngwook;Kwak, Chaemin;Sundaram, Suppiah;Shin, Wansik;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.213-216
    • /
    • 2014
  • Arsenic is a known hazardous metalloid not only to the animals but also to plants. With high concentrations, it can impede normal plant growth and cause even death of plants at extremely high levels. A known plant response to stress conditions such as toxic levels of metal (loids) is the production of stress ethylene, causing inhibitory effect on root growth in plants. When the effect of various arsenic concentrations was tested to maize plant, the stress ethylene emission proportionately increased with increasing concentration of As(V). The inoculation of two arsenic tolerant bacteria; Pseudomonas grimonti JS126 and Pseudomonas taiwanensis JS238 having respective high and low 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity reduced stress ethylene emission by 59% and 30% in maize grown in arsenic polluted soils. The result suggested the possible use of Pseudomonas grimonti JS126 for phytoremediation of arsenic polluted soils.