• Title/Summary/Keyword: ethylene inhibitors

Search Result 32, Processing Time 0.023 seconds

Effect of Ethylene Inhibitors on In Vitro Shoot Multiplication and their Impact on Ethylene Production in Cucumber (Cucumis sativus L.)

  • Vasudevan A.;Selvaraj N.;Ganapathi A.;Anbazhagan V. Ramesh;Choi, C.W.
    • Journal of Plant Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.249-255
    • /
    • 2006
  • Effects of ethylene inhibitors like silver nitrate $(AgNO_3)$, cobalt chloride $(CoCl_2)$ and Salicylic acid (SA) on multiple shoot induction and their impact on ethylene production using embryonal cotyledon cultures of Cucumis sativus L. were examined. The optimum concentration of $AgNO_3\;(40{\mu}M),\;CoCl_2\;(20{\mu}M)\;and\;SA\;(20{\mu}M)$, separately, induced maximum number of shoots on Murashige and Skoog's (MS) medium supplemented optimally with $4.44{\mu}M$ BA and $0.25{\mu}M$ NAA. Among the three ethylene inhibitors tested, $AgNO_3$ produced maximum number of shoots when compared to $CoCl_2$ and SA Ethylene production was monitored in all the treatments with $AgNO_3/CoCl_2/SA$ and it was observed that the treatment with $AgNO_3$ alone showed increase in ethylene production when compared to $CoCl_2$ and SA Even though ethylene concentration was the highest in $AgNO_3$ treated explants, maximum number of shoots was obtained.

Inhibition of ethylene biosynthesis enhances embryogenesis of cultured microspores of Brassica napus

  • Leroux, Benoit;Carmoy, Nathalie;Giraudet, Delphine;Potin, Philippe;Larher, Francois;Bodin, Manuelle
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.347-353
    • /
    • 2009
  • Procedures that induce microspore embryogenesis have been described for a range of Brassica species, but embryo yield remains low for a number of genotypes. We have carried out experiments with the microspores from a weakly responsive line of B. napus to determine the culture conditions that optimize their in vitro embryogenesis by treating them with effectors of ethylene synthesis and action. The results revealed that isolated microspores subjected to an initial heat stress in a medium supplemented with inhibitors of ethylene synthesis such as AVG and $CoCl_2$ exhibited significantly increased embryo yields. This suggested that regulatory effects are exerted by the ethylene produced by the isolated microspores on the early processes of gametogenesis. As a consequence, treatment of microspores with SAM, an ethylene synthesis precursor, or with the ethylene-releasing agent ethephon, led to decreases in embryo yield. A special response to ethylene during the early stages of microspore development was finally shown to occur through experiments where isolated microspores were treated for increasing periods of time with $CoCl_2$. Collectively, our data demonstrated that the induction of embryogenesis induced by heat stress can be enhanced by inhibitors of ethylene biosynthesis.

Determination of Icing Inhibitors (Ethylene Glycol Monomethyl Ether and Diethylene Glycol Monomethyl Ether) in Ground Water by Gas Chromatography-Mass Spectrometry

  • Shin, Ho-Sang;Jung, Dong-Gyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.806-808
    • /
    • 2004
  • A gas chromatography/mass spectrometric assay method has been developed for the simultaneous determination of icing inhibitors, ethylene glycol monomethyl ether and diethylene glycol monomethyl ether in ground water contaminated with JP-8. Ethylene glycol monobutyl ether and ethylene glycol monoethyl ether were used as the internal standard and surrogate, respectively. 100 mL of ground water was extracted twice with 20 mL of methylene chloride. The extract was concentrated to dryness, dissolved with 100 ${\mu}$L of methanol and analyzed by GC-MS (SIM). The use of an Innowax column gave the peaks good chromatographic properties, and the extraction of these compounds from samples gave recoveries of about 50% with small variations. The method detection limits of the target compounds were in a range of 0.5-0.8 ng/mL in ground water.

Effect of Ethylene Inhibitors on Plant Regeneration of Scrophularia buergeriana M. (에틸렌 억제 물질들이 현삼의 식물체재분화에 미치는 영향)

  • Kim, Young-Kyung;Park, Dong-Sik;Kim, Seong-Mu;Cho, Dong-Ha;Yu, Chang-Yeon;Park, Sang-Un
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.6
    • /
    • pp.367-370
    • /
    • 2006
  • The study was carried out to establish an improved protocol for shoot organogenesis and plant regeneration from leaf explant cultures of Scrophularia buergeriana M. with the treatment of ethylene inhibitors [silver nitrate (AgNO$_3$), aminoethox-yvinylglycine (AVG), Cobalt chloride (CoCl$_2$)]. The regenerated shoots obtained from leaf explant cultures on MS medium containing 2 mg/l BAP, The additions of AgNO$_3$. AVG and CoC1$_2$ substantially improved the shoot regeneration frequency, at the optimal concentration of 7 mg/L, 7 mg/L, and 3 mg/L respectively, The regenerated shoots could be easily rooted with 0.1 mg/L IBA treatment. The noted plants were hardened and transferred to vermiculite with a 85% survival rate where they grew normally.

Role of S-Adenosylemthionine as an Intermediate in Relation between Polyamine and Ethylene Biosynthesis in Suspension-Cultured Tobacco Cells (담배 현탁배양 세포에 있어 Polyamine 과 Ethylene 생합성시 중간산물로서 S-Adenosylmethionine의 역할)

  • 박기영
    • Journal of Plant Biology
    • /
    • v.33 no.2
    • /
    • pp.87-96
    • /
    • 1990
  • The role of S-adenosylmethionine (SAM) as an intermediate in interrelation between polyamine and ethylene biosynthesis was studied in suspension cultures of Nicotiana tabacum L. Exogenous SAM stimulated the polyamine and ethylene biosynthesis in 4 day-cultured cells, which were in active cell divisions, and 10 day cultured cells, which went on with active cell elongation and senescence. SAM-induced ethylene production was more effective in 10 day-cultured cells than in 4 day-cultured cells, but SAM-induced polyamine biosynthesis was more effective in 4 day-cultured cells than in 10 day-cultured cells. Polyamine contents were increased by the blockage of ethylene biosynthetic pathway in the conversion of SAM to ethylene via 1-aminocyclopropane-1-carboxylinc acid (ACC) with aminooxyacetic acid (AOA). Also, ethylene production was increased by the inhibitors of polyamine biosynthesis such as methylglyoxal bis-(guanylhydrazone) (MGBG), dicyclohexylamine (DCHA), $\alpha$-difluoromethylarginine (DFMA) and $\alpha$-difluoromethylorinithine (DFMO). These results suggest that there may be interrelations between polyamine and ethylene biosynthesis for the competition of SAM and the inherent mechanism of switch on-off in polyamine and ethylene biosynthetic activity with the progress of cell growth and senescence.

  • PDF

Involvement of spermine in Control of Ethylene-Mediated Growth Response in Ranunculus sceleratus Petioles (Ranunculus sceleratus 엽병의 에틸렌 매개 생장반응조절에 있어서 Spermine의 관여)

  • 정미숙
    • Journal of Plant Biology
    • /
    • v.35 no.4
    • /
    • pp.425-429
    • /
    • 1992
  • Cell elongation is known to be promoted by ethylene in petioles of Ranunculus sceleratus. Treatment of petiole segments with spermine resulted in an inhibition of cell elongation and of ethylene biosynthesis in the presence of applied auxin. Dose response curve for the spermine inhibition of auxin-induced ethylene production appeared similar to that of ACC-based ethylene production suggesting that the polyamine inhibits ethylene biosynthesis by blocking the conversion of ACC to etylene. Auxin-induced ethylene production was significantly promoted by treatment of the tissue with either DFMA or DFMO. specific inhibitors of polyamine biosynthesis. Increased level of ethylene production by DFMA was found to be completely abolished by application of exogenous spermine at a high concentration. These results indicate that endogenous spermine plays a regulatory role in the growth response of Ranunculus petioles to auxin and ethylene.hylene.

  • PDF

Effect of Rice Lodging Inhibitors on the Gibberellin Antagonism, Auxin Interaction, Ethylene Evolution and Growth of SecondCrops (수도(水稻) 도복경감제(倒伏輕減劑) 처리(處理)가 Gibberellin 길항작용(拮抗作用), Auxin 상호작용(相互作用), Ethylene 발생(發生) 및 후작물(後作物) 생육(生育)에 미치는 효과(效果))

  • Kang, C.K.;Park, Y.S.;Yoon, H.Y.
    • Korean Journal of Weed Science
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 1992
  • This experiment was conducted to evaluate the effect of gibberellin biosynthesis retardants as used by rice lodging inhibitors on the gibberellin antagonism, auxin interation, ethylene evolution and growth of second crops. Results obtained can be summarized as follows. Inabenfide, paclobutrazol and uniconazole markedly inhibited the epicotyl elongation of mung bean. Inhibiting effect of epicotyl by these chemicals was markedly stimulated by gibberellic acid, thus showing clear antagonism between these chemicals and gibberellic acid. Significantly large number of roots were formed in the mung bean cuttings which were rooted in the paclobutrazol and uniconazol of 1 ppm. The higher the concentration, the more the number of roots forms. It was guessed that these effect was closely related with auxin. Ethylene evolution was a little stimulated in the leaf of rice under the treatment of inabenfide, paclobutrazol and uniconazole at earlier stage(5 DAT), however it was suppressed at later stage(10, 30 DAT) at higher concentration. The effect of gibberllin biosynthesis inhibitors to second crops retarded tomato plants without influencing the height of barley. The treatment of paclobutrazol and uniconazol which is triazole-type more severely inhibited than that of inabenfide which is isonicotinanilide-type. The more the concentration, the less the height of tomato plants.

  • PDF

Effects of Temperature and Ethylene Response Inhibitors on Growth and Flowering of Passion Fruit

  • Liu, Fang-Yin;Peng, Yung-Liang;Chang, Yu-Sen
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.356-363
    • /
    • 2015
  • This study examined the effects of different day/night temperature regimes or silver ion on growth and flowering of passion fruit 'Tai-nung No.1'. Low temperature treatment ($20/15^{\circ}C$) caused passion fruit cultivar 'Tai-nung No.1' to fail to flower. Flowering induction occurred within a temperature range of $20-30^{\circ}C$, with no significant difference in the days to first flower bud and the total number of flower buds between plants grown at $30/25^{\circ}C$ and $25/20^{\circ}C$. However, plants grown at $30/25^{\circ}C$ exhibited their first flower buds set on the higher nodes and had higher abortion rates of flower buds than those at $25/20^{\circ}C$. Plants grown at $30/25^{\circ}C$ had the most rapid growth and the shortest plastochron. We also evaluated the effect of the ethylene response inhibitors silver nitrate ($AgNO_3$) and silver thiosulfate (STS) on growth and flowering of potted passion fruit 'Tai-nung No.1', when they were exposed to low temperature conditions ($20/15^{\circ}C$) following chemical treatments ($AgNO_3$ or STS, at 0.5 or 1.0 mM). $AgNO_3$ and STS treatments induced flower formation and initial flower bud formation within approximately two weeks at $20/15^{\circ}C$ whereas non-treated control plants exhibited no flower formation. ACC content and activity of ACC oxidase in the leaves of passion fruit 'Tai-nung No.1'exposed to low temperature conditions ($20/15^{\circ}C$) were significantly inhibited by the ethylene inhibitor treatments. These results indicate that ethylene, which is produced under low temperature conditions, plays an important role in inhibiting flower formation in passion fruit.