Abstract
Procedures that induce microspore embryogenesis have been described for a range of Brassica species, but embryo yield remains low for a number of genotypes. We have carried out experiments with the microspores from a weakly responsive line of B. napus to determine the culture conditions that optimize their in vitro embryogenesis by treating them with effectors of ethylene synthesis and action. The results revealed that isolated microspores subjected to an initial heat stress in a medium supplemented with inhibitors of ethylene synthesis such as AVG and $CoCl_2$ exhibited significantly increased embryo yields. This suggested that regulatory effects are exerted by the ethylene produced by the isolated microspores on the early processes of gametogenesis. As a consequence, treatment of microspores with SAM, an ethylene synthesis precursor, or with the ethylene-releasing agent ethephon, led to decreases in embryo yield. A special response to ethylene during the early stages of microspore development was finally shown to occur through experiments where isolated microspores were treated for increasing periods of time with $CoCl_2$. Collectively, our data demonstrated that the induction of embryogenesis induced by heat stress can be enhanced by inhibitors of ethylene biosynthesis.