• Title/Summary/Keyword: estrogenic action

Search Result 18, Processing Time 0.027 seconds

CHEMOPREVENTIVE EFFECT OF GINKGO BILOBA EXTRACT: ESTROGENIC AND ANTIESTROGENIC POTENTIALS IN HUMAN BREAST CANCER CELL LINES

  • Oh, Seung-Min;Chung, Kyu-Hyuck
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.162-162
    • /
    • 2001
  • Phytoestrogens produced naturally by either plants or their seeds are three main classes of phytoestrogens: isoflavone, lignan and coumestan. Phytoestrogens can have both agonist and antagonist action of estrogenic activity. It is believed that phytoestrogens with agonist and antagonist action of estrogenic activity may reduce the risk of breast cancer, in addition to may reduce the risk of osteoporesis by therapeutic agent of breast cancer.(omitted)

  • PDF

Biologically Active Components of Duchesnea indicae Herba (사매의 생리(生理) 활성(活性)에 관한 연구(硏究))

  • Lee, Ihn-Rhan;Lee, Eun-Bang;Lee, Sun-Hee;Lee, Jee-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.15 no.2
    • /
    • pp.85-90
    • /
    • 1984
  • The whole plant of Duchesnea indica (Andr.) Focke (Rosaceae) which has been used in folklore in treating amenorrhea, inflammation, fever and traumatic injuries, in detoxifying and breaking up clots, was studied. The pharmacological test showed that the water extract had estrogenic and histaminergic actions, but no antiserotonin action. As a result of systematic separation in order to detect the active compounds revealing the estrogenic effect, the active compounds were found in the ether fraction. TLC of the ether fraction revealed 8 spots. Among them three major spots (Rf=0.54, 037, 0.31) were separated by preparative TLC. Some chemical properties of those major spots suggested that they were phenolic compounds, but that they were neither linoleic acid nor ${\beta}-sitosterol$ previously reported.

  • PDF

Estrogenic and Antiestrogenic Insecticides in MCF7-BUS Cell Line (피레스로이드계 살충제의 MCF7-BUS세포에 대한 에스트로겐 및 항에스트로겐 효과)

  • 오승민;정규혁
    • YAKHAK HOEJI
    • /
    • v.45 no.6
    • /
    • pp.694-700
    • /
    • 2001
  • Synthetic pyrethroids are analysis of a natural chemical moiety, pyrethrin derived from the pyrethrum plant Chrysanthemum. The natural pyrethrin structure has been modified to be highly lipophilic and photostable, creating an effective pesticide and resulting in an increased presence in the environment. Worldwide, they are commonly used insecticides against ticks, mites, mosquitoes, and as treatment for human head lice and scabies. Therefore, human exposure to their compounds in extensive. Several studies on the effects of pyrethroids on thyroid hormone regulation, estrogen and androgen function have been reported and yet little has been done try assess their potential hormonal activities. Among humans, a pyrethroid compound was suggested to be the causal agent for gynecomastia in a group of Haitian men. The reports suggest that some pyrethroid compounds are capable of disrupting endocrine function. Therefore, we examined estrogenic/antiestrogenic potential of three pyrethroid insecticides, that is permethrin, allethrin and fenvalerate in human breast cancer cell and action mechanism mediated by the estrogen receptor. Fenvalerate showed weak estrogenic activity but aallethrin and permethrin showed no effect. In combination with high levels (10$^{-10}$ M, 10$^{-11}$ M) of 17$\beta$-estradiol and three synthetic pyrethroids inhibited cert proliferations in MCF7-BUS cell by 17$\beta$-estradiol. Whereas, fenvalerate increased cell proliferative activity at lower level of estradiol (10$^{-12}$ M, 10$^{-13}$ M). The relative affinities to the estrogen receptor were observed by allethrin and permethrin treatment, but not by fenvalerate. These results indicated that some of pyrethroid insecticides may modulate estrogen functions in human breast cancer cell. The action mechanisms of estrogen receptor mediated antiestrogenicity by allethrin and permethrin were postulated.

  • PDF

Toxicogenomic Analysis and Identification of Estrogen Responsive Genes of Di (n-ethylhexyl) Phthalate in MCF-7 Cells

  • Kim, Youn-Jung;Yun, Hye-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.149-156
    • /
    • 2005
  • Di (n-ethylhexyl) phthalate (DEHP) is thought to mimic estrogens in their action, and are called endocrine disrupting chemicals. DEHP is used in numerous consumer products, especially those made of flexible polyvinyl chloride and have been reported to be weakly estrogenic. In this study, DEHP were tested for estrogenic properties in vitro models and with microarray analysis. First, the E-screen assay was used to measure the proliferation of DEHP in MCF-7 cells, a human breast cancer cell line. DEHP induced an increase in MCF-7 cell proliferation at concentration of $10^{-4}M$. Second, we carried out a microarray analysis of MCF-7 cells treated with DEHP using human c-DNA microarray including 401 endocrine system related genes. Of the genes analyzed, 60 genes were identified showing significant changes in gene expression resulting from DEHP. Especially, 4 genes were repressed and 4 genes were induced by DEHP compared to $17{\beta}-estradiol$. Among these genes, trefoil factor 3 (intestinal), breast cancer 1, early onset and CYP1B1 are involved in estrogen metabolism and regulation. Therefore it suggests that these genes may be associated with estrogenic effect of the DEHP on transcriptional level. The rationale is that, as gene expression is a sensitive endpoint, alterations of these genes may act as useful biomarkers to define more precisely the nature and level of exposure to kinds of phthalates.

Endocrine Disrupting Activities of Parabens: An Overview of Current Databases on Their Estrogenicity

  • Dang, Vu Hoang;Jeung, Eui-Bae
    • Journal of Embryo Transfer
    • /
    • v.23 no.4
    • /
    • pp.229-237
    • /
    • 2008
  • Recently, parabens have been believed to act as xenoestrogens, an identified class of endocrine disruptors (EDs). These environmental compounds are the most well-known as preservatives in many commercial products, including food, cosmetics and pharmaceutical industries. It has been demonstrated that the human health risks of parabens result from a long-term exposure to skin in which this chemical group is rapidly absorbed through the skin. On the other hand, parabens are also completely absorbed from gastrointestinal tract. It has reported that these substances possess several biological effects in which inhibitory property involved in membrane transports and mitochondrial functions is considered to be important for their action. Testing of parabens has revealed that estrogen-like activities of these chemicals are much less potent than natural estrogen, $17{\beta}$ estradiol (E2). Additionally, the estrogenicity of individual paraben- compounds is distinct depending upon their biochemical structure. Recent findings of paraben-estrogenic activities have shown that these compounds may affect breast cancer incidence in women, suggesting adverse ecological outcomes of this environmental group on human and animal health. Although the biological and toxicological effects of parabens have been demonstrated in many previous studies, possible mechanism(s) of their action are required to be explored in order to bring the better understanding in the detrimental impacts of parabens in human and wildlife. There have several different types of parabens which are the most widely used as preservatives. These include methyl-paraben, ethylparaben, propylparaben, butylparaben and p-hydroxybenzoic acid, a major metabolite of parabens. In this review, we summarize current database based on in vitro and in vivo assays for estrogenic activities and health risk assessment of paraben- EDs which have been published previously.

Studies on the Effects of Onkyungtang (온경탕(溫經湯)의 효능(效能)에 대(對)한 실험적(實驗的) 연구(硏究))

  • Kim, Chul-Won
    • The Journal of Korean Medicine
    • /
    • v.15 no.2 s.28
    • /
    • pp.269-280
    • /
    • 1994
  • To elucidate the effects of Onkyungtang. after oral administration of Onkyungtang water extract in mice and rats, acute toxicity. analgesic. sedative, estrogenic actions. action on isolated uterine muscle were measured. The results obtained were as follows: 1. The yield of water extract of Onkyungtang was 24.5%, minimum lethal dose was 4,000mg/kg, which rarely had the acute toxicity in mice and rats. 2. The analgesic effects of Onkyungtang by acetic acid induced writhing syndrome in mice were not remarkably observed. 3. The relaxant action of Onkyungtang on oxytocin induced contracted uterine muscle in estrogenized rats were not remarkably observed. 4. The sedative effects of Onkyungtang by hexobarbital sodium induced sleeping time in mice were remarked. 5. Administration of Onkyungtang caused remarkable increase in weight of rat's uterus.

  • PDF

Comparative Effects on Secretion of LH, FSH, Prolactin, and Testosterone by Chronic and Direct Hypothalamic Administration of Nonylphenol to Adult Male Rats

  • Park, Kun-Suk;Jang, Won-Cheoul;Kim, Mee-Kyung;Kim, Hyung-Gun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.215-222
    • /
    • 1999
  • Nonylphenol (NP) is a widespread environmental pollutant that has been shown to exert both toxic and estrogenic effects on mammalian cells. As the effects of NP on the reproductive system of adult male vertebrates are virtually unknown, we investigated not only the changes of reproductive hormone secretion in serum after chronic exposure to NP but also, in order to identify the site of its action, the reproductive hormone secretion in serum 48 hours after microinfusion of NP within hypothalamic preoptic area (POA). In the chronic exposure, the luteinizing hormone (LH), follicle stimulating hormone (FSH), and testosterone in serum were decreased but prolactin (PRL) concentrations were increased. The LH, FSH, and testosterone in serum were decreased through the direct infusion of NP into POA, while there was no difference in mean serum prolactin between NP and control groups. These observations suggest that NP as endocrine disruptor has modulatory effects on hypothalamo-pituitary-gonadal axis and that the site of action of NP could be hypothalamic POA.

  • PDF

Effects of Soy Protein and Isoflavones on Bone Markers and Hormones in Growing Male Rats (콩 단백질과 Isoflavones가 성장기 수컷 흰쥐에서 골 지표와 호르몬에 미치는 영향)

  • 최미자
    • Journal of Nutrition and Health
    • /
    • v.36 no.5
    • /
    • pp.452-458
    • /
    • 2003
  • Soybean is a rich source of isoflavones such as genistein and daidzein. Soy isoflavones have both weak estrogenic and anti-estrogenic effects and are structurally similar to tamoxifen, an agent that has an effect similar to that of estrogen in terms of reducing postmenopausal bone loss. The purpose of this study was to determine the effects of differences in protein source (casein vs soy) and isoflavone levels (reduced vs higher levels) on selected bone markers and hormones in growing male rats. Thirty weanling Sprague-Dawley young rats were divided into 3 groups: The control group was fed a casein-based diet, the soy concentrate group was fed soy protein with totally reduced isoflavones content (isoflavones 0.07 mg/g protein), and the soy isolate group was fed soy protein with a higher than normal isoflavones content (isoflavones 3.4 mg/g protein). The degree of bone formation was estimated by measuring serum osteocalcin and alkaline phosphoatase (ALP). By determining collagen cross-linkage by immunoassay and correcting with creatinine values, the bone resorption rate was compared. Serum osteocalcin, growth hormone, estrogen and calcitonin were analyzed using radio immunoassay kits. The bone formation marker and ALP activity were differentiated by protein source, showing higher values than casein in feeding either soy isolate or soy concentrate. In this study using growing rats, the differences in isoflavone contents were not a significant factor in either bone formation or bone reaborption markers. Moreover, the soy isolate group had significantly higher levels of growth hormone than the casein group. The findings of this study suggest that growth hormone is partially responsible for its bone-formation effects in young growing rats. Soy protein and the isoflavones in soy protein are beneficial for bone-formation in growing male rats. Therefore, exposure to soy protein and isoflavones early in life may have long-term health benefits in preventing bone diseases such as osteoporosis. Further study to evaluate the mechanism of action of isoflavones on bones is warranted. (Korean J Nutrition 36(5): 452∼458, 2003)

Effects of phytoestrogen on sexual development

  • Kim, Shin-Hye;Park, Mi-Jung
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.8
    • /
    • pp.265-271
    • /
    • 2012
  • Phytoestrogen is an estrogenic compound that occurs naturally in plants. The most common sources of phytoestrogen are soybean products, which contain high levels of isoflavones. This compound, which has structural similarity with estrogen, can act as an estrogen receptor agonist or antagonist. Animal studies provide evidence of the significant effects of phytoestrogen on sexual development, including altered pubertal timing, impaired estrous cycling and ovarian function, and altered hypothalamus and pituitary functions. Although human studies examining the effects of phytoestrogen on sexual development are extremely limited, the results of some studies agree with those of the animal studies. In this paper, we review the possible mechanism of phytoestrogen action and the evidence showing the effects of phytoestrogen on sexual development in animal and human studies.

Cytotoxicity of Environmental Estrogenic Compound, Bisphenol A, via Generation of Free Radicals (내분비계 장애물질인 Bisphenol A의 free radical 생성을 통한 독성발현)

  • 안광현;김봉희
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.3
    • /
    • pp.175-182
    • /
    • 2003
  • Bisphenol A shares similarities in structure, metabolism and action with DES, a known human teratogen and carcinogen. Bisphenol A, a monomer of polycarbonate and epoxy resins, has been detected in canned food and human saliva. The purpose of the this study was to evaluate the cytotoxicity, cell proliferation of bisphenol A In the presence of a rat liver S9 mix, contaning cytochrome P450 enzymes, and Cu (II). In the present study, Bisphenol A in combination with Cu (II) exhibited a enhancement in cytotoxicity which were inhibited by free radical scavengers. The content of malondialdehyde, an end product of lipid peroxidation, was also found to increase with concentration of bisphenol A. Also, we examined the change of CuZn-SOD, Mn-SOD, catalase and GPx activities in the MCF-7 cells exposed to bisphenol A. The activities of CuZn-SOD, CPx, catalase were found to decrease with bisphenol A concentration. Meanwhile, the activity of Mn-SOD was unchanged. This indicated that elevated oxidative stress caused by imbalance between the production and removal of free radicals occurred in cells.