DOI QR코드

DOI QR Code

Effects of phytoestrogen on sexual development

  • Kim, Shin-Hye (Department of Pediatrics, Sanggye Paik Hospital, Inje University College of Medicine) ;
  • Park, Mi-Jung (Department of Pediatrics, Sanggye Paik Hospital, Inje University College of Medicine)
  • Received : 2012.05.03
  • Accepted : 2012.06.27
  • Published : 2012.08.15

Abstract

Phytoestrogen is an estrogenic compound that occurs naturally in plants. The most common sources of phytoestrogen are soybean products, which contain high levels of isoflavones. This compound, which has structural similarity with estrogen, can act as an estrogen receptor agonist or antagonist. Animal studies provide evidence of the significant effects of phytoestrogen on sexual development, including altered pubertal timing, impaired estrous cycling and ovarian function, and altered hypothalamus and pituitary functions. Although human studies examining the effects of phytoestrogen on sexual development are extremely limited, the results of some studies agree with those of the animal studies. In this paper, we review the possible mechanism of phytoestrogen action and the evidence showing the effects of phytoestrogen on sexual development in animal and human studies.

Keywords

References

  1. Setchell KD. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 1998;68(6 Suppl): 1333S-1346S. https://doi.org/10.1093/ajcn/68.6.1333S
  2. Knight DC, Eden JA. A review of the clinical effects of phytoestrogens. Obstet Gynecol 1996;87(5 Pt 2):897-904.
  3. Barnes S, Kirk M, Coward L. Isoflavones and their conjugates in soy foods: extraction conditions and analysis by HPLC-mass spectrometry. J Agric Food Chem 1994;42:2466-74. https://doi.org/10.1021/jf00047a019
  4. Lee W, Lee SH, Ahn RS, Park MJ. Effect of genistein on the sexual maturation in immature female rats. Korean J Pediatr 2009;52:111-8. https://doi.org/10.3345/kjp.2009.52.1.111
  5. Bateman HL, Patisaul HB. Disrupted female reproductive physiology following neonatal exposure to phytoestrogens or estrogen specific ligands is associated with decreased GnRH activation and kisspeptin fiber density in the hypothalamus. Neurotoxicology 2008;29:988-97. https://doi.org/10.1016/j.neuro.2008.06.008
  6. Jefferson WN, Padilla-Banks E, Newbold RR. Adverse effects on female development and reproduction in CD-1 mice following neonatal exposure to the phytoestrogen genistein at environmentally relevant doses. Biol Reprod 2005;73:798-806. https://doi.org/10.1095/biolreprod.105.041277
  7. Nagao T, Yoshimura S, Saito Y, Nakagomi M, Usumi K, Ono H. Reproductive effects in male and female rats of neonatal exposure to genistein. Reprod Toxicol 2001;15:399-411. https://doi.org/10.1016/S0890-6238(01)00141-1
  8. Kouki T, Kishitake M, Okamoto M, Oosuka I, Takebe M, Yamanouchi K. Effects of neonatal treatment with phytoestrogens, genistein and daidzein, on sex difference in female rat brain function: estrous cycle and lordosis. Horm Behav 2003;44:140-5. https://doi.org/10.1016/S0018-506X(03)00122-3
  9. Faber KA, Hughes CL Jr. Dose-response characteristics of neonatal expo sure to genistein on pituitary responsiveness to gonadotropin releasing hormone and volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) in postpubertal castrated female rats. Reprod Toxicol 1993;7:35-9. https://doi.org/10.1016/0890-6238(93)90007-T
  10. Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS. Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wildtype and ERalpha-knockout mouse. Endocrinology 1997;138:4613-21. https://doi.org/10.1210/en.138.11.4613
  11. Brandenberger AW, Tee MK, Lee JY, Chao V, Jaffe RB. Tissue distribution of estrogen receptors alpha (ER-alpha) and beta (ER-beta) mRNA in the midgestational human fetus. J Clin Endocrinol Metab 1997;82:3509-12. https://doi.org/10.1210/jc.82.10.3509
  12. Enmark E, Pelto-Huikko M, Grandien K, Lagercrantz S, Lagercrantz J, Fried G, et al. Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab 1997;82: 4258-65. https://doi.org/10.1210/jc.82.12.4258
  13. Sarkar FH, Li Y. Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev 2002;21:265-80. https://doi.org/10.1023/A:1021210910821
  14. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998;139:4252-63. https://doi.org/10.1210/en.139.10.4252
  15. Ososki AL, Kennelly EJ. Phytoestrogens: a review of the present state of research. Phytother Res 2003;17:845-69. https://doi.org/10.1002/ptr.1364
  16. Hwang CS, Kwak HS, Lim HJ, Lee SH, Kang YS, Choe TB, et al. Isoflavone metabolites and their in vitro dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. J Steroid Biochem Mol Biol 2006;101:246-53. https://doi.org/10.1016/j.jsbmb.2006.06.020
  17. Martin PM, Horwitz KB, Ryan DS, McGuire WL. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology 1978;103:1860-7. https://doi.org/10.1210/endo-103-5-1860
  18. Delclos KB, Bucci TJ, Lomax LG, Latendresse JR, Warbritton A, Weis CC, et al. Effects of dietary genistein exposure during development on male and female CD (Sprague-Dawley) rats. Reprod Toxicol 2001;15:647-63. https://doi.org/10.1016/S0890-6238(01)00177-0
  19. Padilla-Banks E, Jefferson WN, Newbold RR. Neonatal exposure to the phytoestrogen genistein alters mammary gland growth and developmental programming of hormone receptor levels. Endocrinology 2006; 147:4871-82. https://doi.org/10.1210/en.2006-0389
  20. Takagi H, Shibutani M, Lee KY, Lee HC, Nishihara M, Uneyama C, et al. Lack of modifying effects of genistein on disruption of the reproductive system by perinatal dietary exposure to ethinylestradiol in rats. Reprod Toxicol 2004;18:687-700. https://doi.org/10.1016/j.reprotox.2004.03.002
  21. Takashima-Sasaki K, Komiyama M, Adachi T, Sakurai K, Kato H, Iguchi T, et al. Effect of exposure to high isoflavone-containing diets on prenatal and postnatal offspring mice. Biosci Biotechnol Biochem 2006;70:2874-82. https://doi.org/10.1271/bbb.60278
  22. Casanova M, You L, Gaido KW, Archibeque-Engle S, Janszen DB, Heck HA. Developmental effects of dietary phytoestrogens in Sprague-Dawley rats and interactions of genistein and daidzein with rat estrogen receptors alpha and beta in vitro. Toxicol Sci 1999;51:236-44. https://doi.org/10.1093/toxsci/51.2.236
  23. Lewis RW, Brooks N, Milburn GM, Soames A, Stone S, Hall M, et al. The effects of the phytoestrogen genistein on the postnatal development of the rat. Toxicol Sci 2003;71:74-83. https://doi.org/10.1093/toxsci/71.1.74
  24. Pepling ME, Spradling AC. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 2001;234:339-51. https://doi.org/10.1006/dbio.2001.0269
  25. Jefferson WN, Couse JF, Padilla-Banks E, Korach KS, Newbold RR. Neonatal exposure to genistein induces estrogen receptor (ER)alpha expression and multioocyte follicles in the maturing mouse ovary: evidence for ERbeta-mediated and nonestrogenic actions. Biol Reprod 2002;67: 1285-96. https://doi.org/10.1095/biolreprod67.4.1285
  26. Cimafranca MA, Davila J, Ekman GC, Andrews RN, Neese SL, Peretz J, et al. Acute and chronic effects of oral genistein administration in neonatal mice. Biol Reprod 2010;83:114-21. https://doi.org/10.1095/biolreprod.109.080549
  27. Iguchi T, Fukazawa Y, Uesugi Y, Takasugi N. Polyovular follicles in mouse ovaries exposed neonatally to diethylstilbestrol in vivo and in vitro. Biol Reprod 1990;43:478-84. https://doi.org/10.1095/biolreprod43.3.478
  28. Jefferson WN, Padilla-Banks E, Newbold RR. Disruption of the female reproductive system by the phytoestrogen genistein. Reprod Toxicol 2007; 23:308-16. https://doi.org/10.1016/j.reprotox.2006.11.012
  29. Freeman ME. Neuroendocrine control of the ovarian cycle of the rat. In: Knobil E, Neil JD, editors. The physiology of reproduction. New York: Raven Press, 1994:613-58.
  30. Losa SM, Todd KL, Sullivan AW, Cao J, Mickens JA, Patisaul HB. Neonatal exposure to genistein adversely impacts the ontogeny of hypothalamic kisspeptin signaling pathways and ovarian development in the peripubertal female rat. Reprod Toxicol 2011;31:280-9. https://doi.org/10.1016/j.reprotox.2010.10.002
  31. Morton MS, Chan PS, Cheng C, Blacklock N, Matos-Ferreira A, Abranches-Monteiro L, et al. Lignans and isoflavonoids in plasma and prostatic fluid in men: samples from Portugal, Hong Kong, and the United Kingdom. Prostate 1997;32:122-8. https://doi.org/10.1002/(SICI)1097-0045(19970701)32:2<122::AID-PROS7>3.0.CO;2-O
  32. Morton MS, Arisaka O, Miyake N, Morgan LD, Evans BA. Phytoestrogen concentrations in serum from Japanese men and women over forty years of age. J Nutr 2002;132:3168-71. https://doi.org/10.1093/jn/131.10.3168
  33. Uehar M, Arai Y, Watanabe S, Adlercreutz H. Comparison of plasma and urinary phytoestrogens in Japanese and Finnish women by time-resolved fluoroimmunoassay. Biofactors 2000;12:217-25. https://doi.org/10.1002/biof.5520120134
  34. Foster WG, Chan S, Platt L, Hughes CL Jr. Detection of phytoestrogens in samples of second trimester human amniotic fluid. Toxicol Lett 2002; 129:199-205. https://doi.org/10.1016/S0378-4274(02)00018-8
  35. Setchell KD, Zimmer-Nechemias L, Cai J, Heubi JE. Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet 1997;350:23- https://doi.org/10.1016/S0140-6736(96)09480-9
  36. Freni-Titulaer LW, Cordero JF, Haddock L, Lebron G, Martinez R, Mills JL. Premature thelarche in Puerto Rico. A search for environmental factors. Am J Dis Child 1986;140:1263-7. https://doi.org/10.1001/archpedi.1986.02140260065028
  37. Zung A, Glaser T, Kerem Z, Zadik Z. Breast development in the first 2 years of life: an association with soy-based infant formulas. J Pediatr Gastroenterol Nutr 2008;46:191-5. https://doi.org/10.1097/MPG.0b013e318159e6ae
  38. Bernbaum JC, Umbach DM, Ragan NB, Ballard JL, Archer JI, Schmidt- Davis H, et al. Pilot studies of estrogen-related physical findings in infants. Environ Health Perspect 2008;116:416-20. https://doi.org/10.1289/ehp.12107
  39. Strom BL, Schinnar R, Ziegler EE, Barnhart KT, Sammel MD, Macones GA, et al. Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. JAMA 2001;286:807-14. https://doi.org/10.1001/jama.286.7.807
  40. Wolff MS, Britton JA, Boguski L, Hochman S, Maloney N, Serra N, et al. Environmental exposures and puberty in inner-city girls. Environ Res 2008;107:393-400. https://doi.org/10.1016/j.envres.2008.03.006
  41. Cheng G, Remer T, Prinz-Langenohl R, Blaszkewicz M, Degen GH, Buyken AE. Relation of isoflavones and fiber intake in childhood to the timing of puberty. Am J Clin Nutr 2010;92:556-64. https://doi.org/10.3945/ajcn.2010.29394
  42. Adgent MA, Daniels JL, Rogan WJ, Adair L, Edwards LJ, Westreich D, et al. Early-life soy exposure and age at menarche. Paediatr Perinat Epidemiol 2012;26:163-75. https://doi.org/10.1111/j.1365-3016.2011.01244.x
  43. Kim J, Kim S, Huh K, Kim Y, Joung H, Park M. High serum isoflavone concentrations are associated with the risk of precocious puberty in Korean girls. Clin Endocrinol (Oxf) 2011;75:831-5. https://doi.org/10.1111/j.1365-2265.2011.04127.x
  44. Cassidy A, Bingham S, Setchell KD. Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am J Clin Nutr 1994;60:333-40. https://doi.org/10.1093/ajcn/60.3.333
  45. North K, Golding J. A maternal vegetarian diet in pregnancy is associated with hypospadias. The ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. BJU Int 2000;85:107-13. https://doi.org/10.1046/j.1464-410x.2000.00436.x

Cited by

  1. Assessment of dietary phytoestrogen intake via plant-derived foods in China vol.31, pp.8, 2012, https://doi.org/10.1080/19440049.2014.930562
  2. Nongenetic Determinants of Age at Menarche: A Systematic Review vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/371583
  3. Phytoestrogen Intake and Risk of Ovarian Cancer: a Meta-Analysis of 10 Observational Studies vol.15, pp.21, 2012, https://doi.org/10.7314/apjcp.2014.15.21.9085
  4. Effects of traditional Chinese medicine on symptom clusters during the menopausal transition vol.18, pp.2, 2012, https://doi.org/10.3109/13697137.2014.937687
  5. Assessment of Beneficial and Possible Toxic Effects of Two New Alfalfa-Derived Shelf Products vol.19, pp.10, 2012, https://doi.org/10.1089/jmf.2016.0024
  6. Estrogenic Potentials of Traditional Chinese Medicine vol.45, pp.7, 2017, https://doi.org/10.1142/s0192415x17500756
  7. Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data vol.16, pp.None, 2012, https://doi.org/10.1186/s12940-017-0242-4
  8. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review vol.32, pp.12, 2012, https://doi.org/10.1002/ptr.6178
  9. The effect of methanol extract of soybean (Glycine max L. Merr.) on rat testicular steroid hormones vol.1277, pp.None, 2019, https://doi.org/10.1088/1742-6596/1277/1/012012
  10. Development and Aging of the Mammalian Reproductive System vol.51, pp.1, 2012, https://doi.org/10.1134/s1062360420010075
  11. Detection of Phytoestrogen Metabolites in Breastfed Infants’ Urine and the Corresponding Breast Milk by Liquid Chromatography-Tandem Mass Spectrometry vol.68, pp.11, 2012, https://doi.org/10.1021/acs.jafc.9b08107
  12. Beneficiary and Adverse Effects of Phytoestrogens: A Potential Constituent of Plant-based Diet vol.26, pp.None, 2020, https://doi.org/10.2174/1381612826999200917154747
  13. The Effect of Soy Milk on Mounting Latency, Mounting Frequency, and Reproductive Development in Male Wistar Rats (Rattus Norvegicus) vol.9, pp.2, 2020, https://doi.org/10.3889/oamjms.2021.6416
  14. Selective Estrogen Receptor Modulator-Like Activities of Herba epimedii Extract and its Interactions With Tamoxifen and Raloxifene in Bone Cells and Tissues vol.11, pp.None, 2021, https://doi.org/10.3389/fphar.2020.571598
  15. Co-occurrence and toxicological relevance of secondary metabolites in dairy cow feed from Thailand vol.38, pp.6, 2012, https://doi.org/10.1080/19440049.2021.1905186
  16. Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans vol.10, pp.7, 2021, https://doi.org/10.3390/antiox10071064
  17. The Role of Pediatric Nutrition as a Modifiable Risk Factor for Precocious Puberty vol.11, pp.12, 2021, https://doi.org/10.3390/life11121353