• Title/Summary/Keyword: estrogen receptor agonist

Search Result 33, Processing Time 0.021 seconds

G protein-coupled estrogen receptor-1 agonist induces chemotherapeutic effect via ER stress signaling in gastric cancer

  • Lee, Seon-Jin;Kim, Tae Woo;Park, Gyeong Lim;Hwang, Yo Sep;Cho, Hee Jun;Kim, Jong-Tae;Lee, Hee Gu
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.647-652
    • /
    • 2019
  • G protein-coupled estrogen receptor (GPER) is known to play an important role in hormone-associated cancers. G-1, a novel synthetic GPER agonist, has been reported to exhibit anti-carcinogenic properties. However, the chemotherapeutic mechanism of GPER is yet unclear. Here, we evaluated GPER expression in human gastric cancer tissues and cells. We found that G-1 treatment attenuates GPER expression in gastric cancer. GPER expression increased G-1-induced antitumor effects in mouse xenograft model. We analyzed the effects of knockdown/overexpression of GPER on G-1-induced cell death in cancer cells. Increased GPER expression in human gastric cancer cells increased G-1-induced cell death via increased levels of cleaved caspase-3, -9, and cleaved poly ADP-ribose polymerase. Interestingly, during G-1-induced cell death, GPER mRNA and protein expression was attenuated and associated with ER stress-induced expression of PERK, ATF-4, GRP-78, and CHOP. Furthermore, PERK-dependent induction of ER stress activation increased G-1-induced cell death, whereas PERK silencing decreased cell death and increased drug sensitivity. Taken together, the data suggest that the induction of ER stress via GPER expression may increase G-1-induced cell death in gastric cancer cells. These results may contribute to a new paradigm shift in gastric cancer therapy.

Effects of phytoestrogen on sexual development

  • Kim, Shin-Hye;Park, Mi-Jung
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.8
    • /
    • pp.265-271
    • /
    • 2012
  • Phytoestrogen is an estrogenic compound that occurs naturally in plants. The most common sources of phytoestrogen are soybean products, which contain high levels of isoflavones. This compound, which has structural similarity with estrogen, can act as an estrogen receptor agonist or antagonist. Animal studies provide evidence of the significant effects of phytoestrogen on sexual development, including altered pubertal timing, impaired estrous cycling and ovarian function, and altered hypothalamus and pituitary functions. Although human studies examining the effects of phytoestrogen on sexual development are extremely limited, the results of some studies agree with those of the animal studies. In this paper, we review the possible mechanism of phytoestrogen action and the evidence showing the effects of phytoestrogen on sexual development in animal and human studies.

Histological Changes in the Accessory Reproductive Organs and Liver of Male Mice in Response to Short-term Treatment with an Estrogen Receptor Agonist (에스트로겐 수용체 촉진제의 단기 처리에 따른 수컷 생쥐 부속 생식기관 및 간의 조직학적인 변화)

  • Mo, Yun Jeong;Cho, Young Kuk;Cho, Hyun Wook
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1070-1077
    • /
    • 2014
  • In this study, the estrogen receptor agonist propyl pyrazole triol (PPT), which has high-affinity with the estrogen receptor alpha, was subcutaneously injected into adult male mice every 2 days for 8, 16 and 24 days, after which histological changes in accessory genital glands, including the prostate and seminal vesicle, and the liver were observed. The body and genital gland weights decreased in the PPT group relative to those of the control group. However, the liver weight was two times greater in the PPT group. The luminal area of the prostate and seminal vesicle organs was lower in the PPT group, and the epithelial cell height of the prostate was increased relative to that of the control. There were many secretory vacuoles in the supranuclear cytoplasm of epithelial cells in the seminal vesicles of the control group, but these were not observed in the PPT group. The short sinusoidal diameter of the liver was 147.0%, 198.7%, and 223.3% greater in the PPT group than in the control group after 8, 16, and 24 days of treatment, respectively. These results suggest that PPT administration affected the reproductive organs and the liver and that the histological changes increased in accordance with a rise in the concentration of PPT. Overall, the PPT treatment caused changes in the epithelial cell height and resulted in atrophy of the luminal area of the prostate, leading to altered fertility. The sinusoidal diameter of the liver dramatically increased in response to the administration of PPT, increasing the liver weight.

TERT mRNA Expression is Up-Regulated in MCF-7 Cells and a Mouse Mammary Organ Culture (MMOC) System by Endosulfan Treatment

  • Je Kang Hoon;Kim Ki Nam;Nam Kung Woo;Cho Myung Haing;Mar Woong Chon
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.351-357
    • /
    • 2005
  • Endosulfan is one of the organochlorine pesticides, which are well-known endocrine disruptors (EDs), and it acts as an estrogen agonist. Estrogen is a group of hormones that play an important role in mammary gland function and are implicated in mammary carcinogenesis. In the present study, we studied the effects of endosulfan on nodule like alveolar lesion (NLAL) formation in mouse mammary gland development using a mouse mammary gland organ culture (MMOC) system. Although endosulfan-treated mammary glands did not form NLALs, more alveolar buds were formed in this group than in the negative control (vehicle-treated) group. In addition, telomerase reverse transcriptase (TERT) mRNA expression levels were increased in endosulfan-treated mammary glands in a dose-dependent manner. Telomerase can be activated by estrogen, therefore, we examined the effects of endosulfan on telomerase activity, and found that the telomerase activity in estrogen receptor-positive MCF-7 cells was up-regulated by endosulfan treatment. Moreover, this activation was accompanied by the up­regulation of the TERT mRNA expression. Also, transient expression assays using CAT reporter plasm ids containing various fragments of the TERT promoter showed that this imperfect palindromic estrogen-responsive element is almost certainly responsible for the transcriptional activation by endosulfan. These results may help elucidate the endocrine disrupting mechanism of endosulfan.

Morphological Changes of Accessory Genital Organs Induced by Treatment with Different Concentration of Estrogen Receptor Agonist in the Male Mouse (수컷 생쥐에서 에스트로겐 수용체 촉진제의 농도별 투여에 의한 부속 생식샘의 형태학적 변화)

  • Cho, Young-Kuk;Han, Ji-Yeon;Cho, Hyun-Wook
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.265-276
    • /
    • 2011
  • The aim of the present study is to validate the effects of treatment with different concentration of estrogen receptor alpha agonist, propyl pyrazole triol (PPT) on the weight and histological structure in the accessory reproductive organs (ventral prostate, seminal vesicle and preputial gland) of male mouse. Treated groups received different doses of PPT 0.01 mg, 0.1 mg and 1.0 mg per week respectively, for 3, 5, and 8 weeks. In general, the weight of reproductive organs was increased in PPT 0.01 mg and 0.1 mg treatment, however decreased in PPT 1.0 mg treatment. Epithelial tissues in the ventral prostate were changed from simple columnar epithelium to squamous or cuboidal epithelium in the treated groups. On week 3, PPT groups caused decrease of epithelial cell height in the ventral prostate. Lumen of the seminal vesicle was narrowed in the treated group. Epithelial cell height of seminal vesicle was reduced in the PPT treatment. Acinus tissue of preputial gland in PPT 1.0 mg treatment was dramatically atrophied than that of control group. These results are useful as a reference to determine the administration concentration of PPT in experiments for understanding the physiological functions of estrogen in the male.

Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmiaassociated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells

  • Lee, Hyun Jeong;An, Sungkwan;Bae, Seunghee;Lee, Jae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.113-123
    • /
    • 2022
  • Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via downregulation of PKA/CREB/MITF signaling pathway.

Computational and experimental characterization of estrogenic activities of 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol

  • Zhang, Tiehua;Zhong, Shuning;Hou, Ligang;Wang, Yongjun;Xing, XiaoJia;Guan, Tianzhu;Zhang, Jie;Li, Tiezhu
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.690-696
    • /
    • 2020
  • Background: As the main metabolites of ginsenosides, 20(S, R)-protopanaxadiol [PPD(S, R)] and 20(S, R)-protopanaxatriol [PPT(S, R)] are the structural basis response to a series of pharmacological effects of their parent components. Although the estrogenicity of several ginsenosides has been confirmed, however, the underlying mechanisms of their estrogenic effects are still largely unclear. In this work, PPD(S, R) and PPT(S, R) were assessed for their ability to bind and activate human estrogen receptor α (hERα) by a combination of in vitro and in silico analysis. Methods: The recombinant hERα ligand-binding domain (hERα-LBD) was expressed in E. coli strain. The direct binding interactions of ginsenosides with hERα-LBD and their ERα agonistic potency were investigated by fluorescence polarization and reporter gene assays, respectively. Then, molecular dynamics simulations were carried out to simulate the binding modes between ginsenosides and hERα-LBD to reveal the structural basis for their agonist activities toward receptor. Results: Fluorescence polarization assay revealed that PPD(S, R) and PPT(S, R) could bind to hERα-LBD with moderate affinities. In the dual luciferase reporter assay using transiently transfected MCF-7 cells, PPD(S, R) and PPT(S, R) acted as agonists of hERα. Molecular docking results showed that these ginsenosides adopted an agonist conformation in the flexible hydrophobic ligand-binding pocket. The stereostructure of C-20 hydroxyl group and the presence of C-6 hydroxyl group exerted significant influence on the hydrogen bond network and steric hindrance, respectively. Conclusion: This work may provide insight into the chemical and pharmacological screening of novel therapeutic agents from ginsenosides.

The estrogen-related receptor γ modulator, GSK5182, inhibits osteoclast differentiation and accelerates osteoclast apoptosis

  • Kim, Hyun-Ju;Yoon, Hye-Jin;Lee, Dong-Kyo;Jin, Xian;Che, Xiangguo;Choi, Je-Yong
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.266-271
    • /
    • 2021
  • Estrogen-related receptor γ (ERRγ), a member of the orphan nuclear receptor family, is a key mediator in cellular metabolic processes and energy homeostasis. Therefore, ERRγ has become an attractive target for treating diverse metabolic disorders. We recently reported that ERRγ acts as a negative regulator of osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL). In the present study, we explored the effects of an ERRγ-specific modulator, GSK5182, on ERRγ-regulated osteoclast differentiation and survival. Interestingly, GSK5182 increased ERRγ protein levels much as does GSK4716, which is an ERRγ agonist. GSK5182 inhibited osteoclast generation from bone-marrow-derived macrophages without affecting cytotoxicity. GSK5182 also attenuated RANKL-mediated expression of cFos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), pivotal transcription factors for osteoclastogenesis. Arrested osteoclast differentiation was associated with reduced RANK expression, but not with the M-CSF receptor, c-Fms. GSK5182 strongly blocked the phosphorylation of IκBα, c-Jun N-terminal kinase, and extracellular signal-regulated kinase in response to RANKL. GSK5182 also suppressed NF-κB promoter activity in a dose-dependent manner. In addition to osteoclastogenesis, GSK5182 accelerated osteoclast apoptosis by caspase-3 activation. Together, these results suggest that GSK5182, a synthetic ERRγ modulator, may have potential in treating disorders related to bone resorption.

Effect of Diazepam on the Oxytocin Induced Contraction of the Isolated Rat Uterus (Oxytocin의 자궁수축작용에 미치는 Diazepam의 영향)

  • Park, Yoon-Kee;Lee, Sung-Ho;Kwon, Oh-Cheol;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.359-381
    • /
    • 1992
  • This study was designed to investigate the effect of diazepam on the spontaneous contraction and oxytocin induced contraction of the isolated rat uterus. Female rat(Sprague-Dawley) pretreated with oophorectomy and 4 days administration of estrogen, weighing about 200 g, was sacrificed by cervical dislocation, and the uteruses were isolated. A longitudinal muscle strip was placed in temperature controlled($37^{\circ}C$) muscle chamber containing Locke's solution and myographied isometrically. Diazepam inhibited the spontaneous contraction and oxytocin induced contraction of the isolated rat uterus in a concentration-dependent manner. GABA, muscimol, a GABA A receptor agonist, bicuculline, a competitive GAGA A receptor antagonist, picrotoxin, a non competitive GABA A receptor antagonist, baclofen, a GABA B receptor agonist, and delta-aminovaleric acid, a GABA B receptor antagonist, did not affect on the spontaneous and oxytocin induced contraction of the isolated rat uterus. The inhibitory actions of diazepam on the spontaneous and oxytocin induced contraction were not affected by all the GABA receptor agonists and antagonists, but exceptionally potentiated by bicuculline. This potentiation-effect by bicuculline was not antagonized by muscimol. In normal calcium PSS, addition of calcium restored the spontaneous contraction preinhibited by diazepam and recovered the contractile of oxytocin preinhibited by diazepam. A23187, a calcium inophore, enhanced the restoration of both the spontaneous and oxytocin induced contraction by addition of calcium. In calcium-free PSS, diazepam suppressed the restoration of spontaneous motility by addition of calcium but allowed the recovery of spontaneous motility to a considerable extent. Diazepam could not inhibit some development of contractility by oxytocin in calcium-free PSS, but inhibited the increase in contractility by subsequent addition of calcium. These results suggest that the inhibitory action of diazepam on the rat uterine motility does not depend on or related to GABA receptors and that diazepam inhibits the extracellular calcium influx to suppress the spontaneous and oxytocin induced contractilities.

  • PDF