Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No. 2018R1A2B6001298); the Basic Science Research Program of NRF grant funded by the Ministry of Education, Science, and Technology (NRF-2015R1D1A1A01056666); and the Bio & Medical Technology Development Program (NRF-2017R1A5A2015391).
References
- Boyle WJ, Simonet WS and Lacey DL (2003) Osteoclast differentiation and activation. Nature 423, 337-342 https://doi.org/10.1038/nature01658
- Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289, 1504-1508 https://doi.org/10.1126/science.289.5484.1504
- Tsukasaki M and Takayanagi H (2019) Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol 19, 626-642 https://doi.org/10.1038/s41577-019-0178-8
- Kong YY, Yoshida H, Sarosi I et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315-323 https://doi.org/10.1038/16852
- Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165-176 https://doi.org/10.1016/S0092-8674(00)81569-X
- Wong BR, Rho J, Arron J et al (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272, 25190-25194 https://doi.org/10.1074/jbc.272.40.25190
- Yasuda H, Shima N, Nakagawa N et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95, 3597-3602 https://doi.org/10.1073/pnas.95.7.3597
- Lee ZH and Kim HH (2003) Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem Biophys Res Commun 305, 211-214 https://doi.org/10.1016/S0006-291X(03)00695-8
- Park JH, Lee NK and Lee SY (2017) Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells 40, 706-713 https://doi.org/10.14348/molcells.2017.0225
- Kim JH and Kim N (2014) Regulation of NFATc1 in osteoclast differentiation. J Bone Metab 21, 233-241 https://doi.org/10.11005/jbm.2014.21.4.233
- Nakashima T, Hayashi M and Takayanagi H (2012) New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab 23, 582-590 https://doi.org/10.1016/j.tem.2012.05.005
- Giguere V (2008) Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev 29, 677-696 https://doi.org/10.1210/er.2008-0017
- Giguere V, Yang N, Segui P and Evans RM (1988) Identification of a new class of steroid hormone receptors. Nature 331, 91-94 https://doi.org/10.1038/331091a0
- Hong H, Yang L and Stallcup MR (1999) Hormone-independent transcriptional activation and coactivator binding by novel orphan nuclear receptor ERR3. J Biol Chem 274, 22618-22626 https://doi.org/10.1074/jbc.274.32.22618
- Misra J, Kim DK and Choi HS (2017) ERRgamma: a junior orphan with a senior role in metabolism. Trends Endocrinol Metab 28, 261-272 https://doi.org/10.1016/j.tem.2016.12.005
- Chao EY, Collins JL, Gaillard S et al (2006) Structure-guided synthesis of tamoxifen analogs with improved selectivity for the orphan ERRgamma. Bioorg Med Chem Lett 16, 821-824 https://doi.org/10.1016/j.bmcl.2005.11.030
- Kim DK, Gang GT, Ryu D et al (2013) Inverse agonist of nuclear receptor ERRgamma mediates antidiabetic effect through inhibition of hepatic gluconeogenesis. Diabetes 62, 3093-3102 https://doi.org/10.2337/db12-0946
- Kim JH, Choi YK, Do JY et al (2015) Estrogen-related receptor gamma plays a key role in vascular calcification through the upregulation of BMP2 expression. Arterioscler Thromb Vasc Biol 35, 2384-2390 https://doi.org/10.1161/ATVBAHA.115.306102
- Son YO, Park S, Kwak JS et al (2017) Estrogen-related receptor gamma causes osteoarthritis by upregulating extracellular matrix-degrading enzymes. Nat Commun 8, 2133 https://doi.org/10.1038/s41467-017-01868-8
- Vernier M, Dufour CR, McGuirk S et al (2020) Estrogenrelated receptors are targetable ROS sensors. Genes Dev 34, 544-559 https://doi.org/10.1101/gad.330746.119
- Cardelli M and Aubin JE (2014) ERRgamma is not required for skeletal development but is a RUNX2-dependent negative regulator of postnatal bone formation in male mice. PLoS One 9, e109592 https://doi.org/10.1371/journal.pone.0109592
- Cardelli M, Zirngibl RA, Boetto JF et al (2013) Cartilage-specific overexpression of ERRgamma results in Chondrodysplasia and reduced chondrocyte proliferation. PLoS One 8, e81511 https://doi.org/10.1371/journal.pone.0081511
- Jeong BC, Lee YS, Park YY et al (2009) The orphan nuclear receptor estrogen receptor-related receptor gamma negatively regulates BMP2-induced osteoblast differentiation and bone formation. J Biol Chem 284, 14211-14218 https://doi.org/10.1074/jbc.M808345200
- Kim HJ, Kim BK, Ohk B et al (2019) Estrogen-related receptor gamma negatively regulates osteoclastogenesis and protects against inflammatory bone loss. J Cell Physiol 234, 1659-1670 https://doi.org/10.1002/jcp.27035
- Kim DK, Jeong JH, Lee JM et al (2014) Inverse agonist of estrogen-related receptor gamma controls Salmonella typhimurium infection by modulating host iron homeostasis. Nat Med 20, 419-424 https://doi.org/10.1038/nm.3483
- Kim DK, Kim JR, Koh M et al (2011) Estrogen-related receptor gamma (ERRgamma) is a novel transcriptional regulator of phosphatidic acid phosphatase, LIPIN1, and inhibits hepatic insulin signaling. J Biol Chem 286, 38035-38042 https://doi.org/10.1074/jbc.M111.250613
- Kim DK, Ryu D, Koh M et al (2012) Orphan nuclear receptor estrogen-related receptor gamma (ERRgamma) is key regulator of hepatic gluconeogenesis. J Biol Chem 287, 21628-21639 https://doi.org/10.1074/jbc.M111.315168
- Bianco S, Lanvin O, Tribollet V, Macari C, North S and Vanacker JM (2009) Modulating estrogen receptor-related receptor-alpha activity inhibits cell proliferation. J Biol Chem 284, 23286-23292 https://doi.org/10.1074/jbc.M109.028191
- Johnson RS, Spiegelman BM and Papaioannou V (1992) Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell 71, 577-586 https://doi.org/10.1016/0092-8674(92)90592-Z
- Wang ZQ, Ovitt C, Grigoriadis AE, Mohle-Steinlein U, Ruther U and Wagner EF (1992) Bone and haematopoietic defects in mice lacking c-fos. Nature 360, 741-745 https://doi.org/10.1038/360741a0
- Takayanagi H, Kim S, Koga T et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3, 889-901 https://doi.org/10.1016/S1534-5807(02)00369-6
- Asagiri M, Sato K, Usami T et al (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202, 1261-1269 https://doi.org/10.1084/jem.20051150
- Franzoso G, Carlson L, Xing L et al (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11, 3482-3496 https://doi.org/10.1101/gad.11.24.3482
- Iotsova V, Caamano J, Loy J, Yang Y, Lewin A and Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3, 1285-1289 https://doi.org/10.1038/nm1197-1285
- Kim HJ, Lee DK, Jin X, Che X and Choi JY (2020) Oleoylethanolamide exhibits GPR119-dependent inhibition of osteoclast function and GPR119-independent promotion of osteoclast apoptosis. Mol Cells 43, 340-349 https://doi.org/10.14348/molcells.2020.2260
- Jung YK, Han SW, Kim GW, Jeong JH, Kim HJ and Choi JY (2012) DICAM inhibits osteoclast differentiation through attenuation of the integrin alphaVbeta3 pathway. J Bone Miner Res 27, 2024-2034 https://doi.org/10.1002/jbmr.1632
- Takeshita S, Kaji K and Kudo A (2000) Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res 15, 1477-1488 https://doi.org/10.1359/jbmr.2000.15.8.1477