• Title/Summary/Keyword: estimation reliability

Search Result 1,566, Processing Time 0.031 seconds

Literature Review on the Reliability in KSQM for 50 Years (품질경영학회 50주년 특별호: 신뢰성 분야 연구 리뷰)

  • Sung, Si-Il;Kim, Yong Soo;Mun, Byeong Min;Bae, Suk Joo
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.1
    • /
    • pp.29-42
    • /
    • 2016
  • Purpose: This paper reviews the papers on reliability issues which are published in the Journal of the Korean Society for Quality Management (KSQM) since 1965. The literature review is purposed to survey a variety of reliability issues for several categories Methods: We divide all of reliability issues into 9 categories: acceleration test, reliability estimation, system reliability, software reliability, reliability data collection and analysis method, lifetime distribution, maintenance and warranty strategy, reliability applications, and reliability applications to military area Results: Dividing all of papers on reliability published in KSQM for 50 years into 9 categories, we provide a chronological roadmap for individual categories, and summarize the contents and contributions of surveyed papers Conclusion: The review paper is expected to provide future direction to improve reliaiblity theories and applications in manufacturing and service industries

Estimation of parameters including a quadratic failure rate semi-Markov reliability model

  • El-Gohary, A.;Alshamrani, A.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • This paper discusses the stochastic analysis and the statistical inference of a quadratic failure rate semi-Markov reliability model. Maximum likelihood procedure will be used to obtain the estimators of the parameters included in this reliability model. Based on the assumption that the lifetime and repair time of the system units are random variables with quadratic failure rate, the reliability function of this system is obtained. Also, the distribution of the first passage time of this system is derived. Many important special cases are discussed.

  • PDF

Accelerated Test Design for Crankshaft Reliability Estimation

  • Jung, D.H.;Pyun, Y.S.;Gafurov, A.;Chung, W.S.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.2
    • /
    • pp.109-118
    • /
    • 2009
  • Crankshaft, the core element of the engine of a vehicle, transforms the translational motion generated by combustion to rotational motion. Its failure will cause serious damage to the engine so its reliability verification must be performed. In this study, the S-N data of the bending and torsion fatigue limits of a crankshaft are derived. To evaluate the reliability of the crankshaft, reliability verification and analysis are performed. For the purpose of further evaluation, the bending and torsion tests of the original crankshaft are carried out, and failure mode analysis is made. The appropriate number of samples, the applied load, and the test time are computed. On the basis of the test results, Weibull analysis for the shape and scale parameters of the crankshaft is estimated. Likewise, the $B_{10}$ life under 50% of the confidence level and the MTTF are exactly calculated, and the groundwork for improving the reliability of the crankshaft is laid.

  • PDF

Reliability Effect Analysis for Game Software Verification and Validation (게임 소프트웨어의 확인 및 검증에 대한 신뢰도 영향 분석)

  • Son, Han-Seong;Roh, Chang-Hyun
    • Journal of Korea Game Society
    • /
    • v.11 no.6
    • /
    • pp.53-60
    • /
    • 2011
  • Since the importance of software reliability for game service increases continuously, the reliability evaluation becomes very important. This research performed an experiment which was intended to analyze the effect of software verification and validation, a representative activity of the software development process, on the software reliability. The results from the experiments provided the reliability evaluation based on the development process (e.g., Bayesian Belief Network based reliability estimation) with very useful bases.

A SOFTWARE RELIABILITY ESTIMATION METHOD TO NUCLEAR SAFETY SOFTWARE

  • Park, Gee-Yong;Jang, Seung Cheol
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.55-62
    • /
    • 2014
  • A method for estimating software reliability for nuclear safety software is proposed in this paper. This method is based on the software reliability growth model (SRGM), where the behavior of software failure is assumed to follow a non-homogeneous Poisson process. Two types of modeling schemes based on a particular underlying method are proposed in order to more precisely estimate and predict the number of software defects based on very rare software failure data. The Bayesian statistical inference is employed to estimate the model parameters by incorporating software test cases as a covariate into the model. It was identified that these models are capable of reasonably estimating the remaining number of software defects which directly affects the reactor trip functions. The software reliability might be estimated from these modeling equations, and one approach of obtaining software reliability value is proposed in this paper.

Parameter Estimation and Reliability Analysis Using Bayesian Approach for Bolted Joint and O-ring Seal of Solid Rocket Motor (고체 로켓 모터의 체결 볼트와 오링에 대한 베이지안 접근법 기반 모수 추정과 신뢰성 해석)

  • Gang, Jin Hyuk;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1055-1064
    • /
    • 2017
  • Since a device such as a rocket motor requires very high reliability, a reasonable reliability design process is essential. However, Korea has implemented a design method for applying a safety factor to each component. In classic reliability analysis, input variables such as mean and standard deviation, used in the limit state function, are treated as deterministic values. Because the mean and standard deviation are determined by a small amount of data, this approach could lead to inaccurate results. In this study, reliability analysis is performed for bolted joints and o-ring seals, and the Bayesian approach is used to statistically estimate the input variables. The estimated variables and failure probability, calculated by the reliability analysis, are derived in the form of probability distributions.

Comparison of Storage Lifetimes by Variance Assumption using Accelerated Degradation Test Data (파괴적 가속열화시험 데이터의 분산가정에 따른 수명비교)

  • Kim, Jonggyu;Back, Seungjun;Son, Youngkap;Park, Sanghyun;Lee, Moonho;Kang, Insik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.173-179
    • /
    • 2018
  • Estimating reliability of a non-repairable system using the degradation data, variance assumption such as homogeneity (constant) or heteroscedasticity (time-variant) could affect accuracy of reliability estimation. This paper showed reliability estimation and comparison results under normal conditions using accelerated degradation data obtained from destructive measurements, according to variance assumption of the data at each measurement time. Degradation data from three accelerated conditions with stress factors of temperature and humidity were used to estimate reliability. The $B_{10}$ lifetime was estimated as 1243.8 years by constant variance assumption, and 18.9 years by time-variant variance. And variance assumption provided different analysis results of important stresses to reliability. Thus, accurate assumption of variance at each measurement time is required when estimating reliability using degradation data of a non-repairable system.

A Study on the Attribute Analysis of Software Reliability Model with Shape Parameter Change of Infinite Fault NHPP Lomax Life Distribution (무한고장 NHPP Lomax 수명분포의 형상모수 변화에 따른 소프트웨어 신뢰성 모형의 속성 분석에 관한 연구)

  • Min, Kyung-il
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.20-26
    • /
    • 2019
  • In this study, the optimal shape parameter condition is presented after analyzing the attributes of the software reliability model according to the change of the shape parameter of Loma life distribution with infinite fault NHPP. In order to analyze the software failure phenomena, the parametric estimation method was applied to the Maximum Likelihood Estimation method, and the nonlinear equation was applied to the bisection method. As a result, it was found that when the attributes according to the change of the shape parameter are compared, the smaller the shape parameter is, the better the prediction ability of the true value, and reliability attributes are efficient. Through this study, it is expected that software developers can increase reliability by preliminarily grasping the type of software failure based on shape parameter, and can be used as basic information to improve the software reliability attributes.

Adaptively selected autocorrelation structure-based Kriging metamodel for slope reliability analysis

  • Li, Jing-Ze;Zhang, Shao-He;Liu, Lei-Lei;Wu, Jing-Jing;Cheng, Yung-Ming
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.187-199
    • /
    • 2022
  • Kriging metamodel, as a flexible machine learning method for approximating deterministic analysis models of an engineering system, has been widely used for efficiently estimating slope reliability in recent years. However, the autocorrelation function (ACF), a key input to Kriging that affects the accuracy of reliability estimation, is usually selected based on empiricism. This paper proposes an adaption of the Kriging method, named as Genetic Algorithm optimized Whittle-Matérn Kriging (GAWMK), for addressing this issue. The non-classical two-parameter Whittle-Matérn (WM) function, which can represent different ACFs in the Matérn family by controlling a smoothness parameter, is adopted in GAWMK to avoid subjectively selecting ACFs. The genetic algorithm is used to optimize the WM model to adaptively select the optimal autocorrelation structure of the GAWMK model. Monte Carlo simulation is then performed based on GAWMK for a subsequent slope reliability analysis. Applications to one explicit analytical example and two slope examples are presented to illustrate and validate the proposed method. It is found that reliability results estimated by the Kriging models using randomly chosen ACFs might be biased. The proposed method performs reasonably well in slope reliability estimation.

Study on Statistical Analysis of Measured Fluid Leakage Data and Estimation of the Leakage Rate for Power Plant Valve (발전용 밸브 유체누설 측정 데이터의 통계적 평가 및 누설량 예측 연구)

  • Lee, S.G.;Kim, D.W.;Kim, Y.S.;Park, J.H;Jeong, H.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.59-66
    • /
    • 2009
  • High temperature and pressure valves in power plant have been used for fluid flowing and leakage occurred owing to valve internal damage such as disc wear, crack and inserting of foreign objects etc. in these valves. Recently, multi-measuring technique applied both ultrasonic and acoustic method have been used for evaluation of valve internal leakage in order to raise measurement reliability. Therefore, we have performed various leakage tests using ultrasonic and acoustic measuring system and acquired leakage data for the various leakage conditions. In this study, we developed the estimation method of regression model through leakage data, and expectation method for valve opening ratio, which is directly proportion to leakage rate, using the established estimation model from the measured data, valve size and fluid pressure so as to enhance data reliability. As a result of this study, it was founded that expectation method of leakage rate by statistical analysis method is appropriate to valve leakage evaluation.

  • PDF