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Abstract. This paper discusses the stochastic analysis and the statistical inference of
a quadratic failure rate semi-Markov reliability model. Maximum likelihood
procedure will be used to obtain the estimators of the parameters included in this
reliability model. Based on the assumption that the lifetime and repair time of the
system units are random variables with quadratic failure rate, the reliability function
of this system is obtained. Also, the distribution of the first passage time of this
system is derived. Many important special cases are discussed.
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1. INTRODUCTION

The development of stochastic models in any applied setting has great importance
since they have many applications in different fields such as reliability systems, social
security policy analysis, health care services (El-Gohary and Al-Khedhairi, 2010, El-
Gohary, 2005, EI-Gohary, 2004, Kastner and Shachtman, 1982).

The severity of run a discrete semi-Markov risk models and iterative convergence of
passage time densities in semi-Markov performance models are discussed in Reinhard and
Snoussi (2002) and Jeremy et al. (2005).

A Markov chain analysis can be used to describe patterns of deposition and
conditional probability of occurrence of different rock types through transition probability
matrices (Dacay and Krumbein, 1970; Krumbein and Graybill, 1965). The stochastic
analysis of a semi-Markov reliability model is rarely investigated during the last two
decades. For a more extensive overview of the reliability theory of repairable systems, see
the well-known books (Korolyuk and Swishchuk, 1994; Barlow and Proschan, 1981).

To discuss the stochastic analysis of our reliability model, we present some important
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2 Estimation of parameters including a quadratic failure rate semi-Markov reliability model

definitions. A semi Markov process {X(#) : £ > 0} is a stochastic process in which changes
of state occur according to a Markov chain the time interval between two successive
transitions is a random variable whose distribution depends on the state from which the
transition takes place as well as the state to which the next transition takes place
(Korolyuk and Swishchuk, 1994). Generally a semi-Markov process with discrete state
space can be defined as a Markov renewal process (El-Gohary, 2005).

In this paper, in section 2, we will display some important definitions and properties
of a semi-Markov process and its kernel. In section 3 we use the stochastic analysis and
semi-Markov model to estimate the parameters included in some reliability models. The
maximum likelihood method is used to derive the point and confidence interval estimates
of these parameters. Further, some properties of this reliability model are discussed.

2. BASIC DEFINITIONS AND SEMI-MARKOV KERNEL

In this section we shall throw some light upon the definitions and properties of semi-
Markov processes. The semi-Markov kernel and its properties will be discussed. A semi-

Markov process is a stochastic process, {X(¢) : ¢ > 0}, where an embedded Markov chain

governs the state-to-state transitions of the process while a separate probabilistic
mechanism determines the time spent in each state. It is assumed that the transition
probabilities depend on the current state and the time spent in each state depends upon the
current and next state.

Definition 2.1 Assume that the set of nonnegative integers, S = {0, 1, 2, ...}, represents the
states of a stochastic process and let the transitions of the process occur at time instants
to =0, t,ty,...(t, < tn+1). Suppose that X, denote the transition occurring at time

instant t,. Then the twice {X,,t,},n=0, 1,2, ... is said to constitute a Markov renewal
process if
P{Xntl=k m+l —m ¢X0=i0X1=il,... Xn=in;10,¢1,...,tn} =
P{Xn+1 =k tn+tl —tn_t|Xn=in}, 2.1
Definition 2.2 The Markov renewal process {Xn, tn}, n = 0, 1, 2, . . . is said to

homogeneous if
P{Xn+1 =k tm+1 —tn _t|Xn=1i} = Qik(?) (2.2)
does not depend on n

Lemma 2.1 Assume that {Xn,n=0, 1, 2, ...} constitutes a Markov chain with state space
S ={0, 1, 2, ...},and transition probability matrix P = {pij}. The continuous parameter
process Y (t) with state space S = {0, 1, 2, ...}, defined by

YO =Xn tn t<tnt+l (2.3)
is called semi-Markov process.

The semi-Markov process is a stochastic process which changes its state according to
a Markov chain and the time interval between two successive transitions is a random
variable, whose distribution may be depend not only on the present state but also on the
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state of the next transition.

Definition 2.3 A two-dimensional Markov process {§,,9,,n € N} with values in
S X [0, ) is called a Markov renewal process if and only if
1. Qij =P{&ni1 =), Ops1 Stl&n =10, 9y =ty -+, & = 10,99 = to}
=Pns1 =J, Ins1 <t|§ =1}
2. P{§ =1, 99 =0} =py

In the Markov renewal process, the non-negative random variables 9J,,n = 1 , define the
interval between Markov renewal times:

Now, let
v(t) : = Xa=1ljo,q (T) (2.4)
where
_ (1 ifT, € [0,¢]
loa(Tn) = {0 otherwisw 2:5)

The process v(t) is called a counting process. It determines the number of renewal times
on the segment [0, ¢].

Definition 2.4 A stochastic process {X(t) : t = 0} where X(t) = &, is called a semi-
Markov process that generated by the Markov renewal process with initial distribution
P = p(§, = i) and the kernel Q(t),t > 0.

Since the counting process v(t) keeps constant values on the half-interval
[ty ths1) and is continuous from the right, then the semi-Markov process keeps also
constant values on the half intervals [T, Tp4q): Xn(t) = &, for t € [T, Theq)-
Moreover the sequence {X(t,) :n € N} is a Markov chain with transition probability
matrix P = {pif = Qy;(),14,4,€ S} that is called an embedded Markov chain. The
concept of a Markov renewal process is a natural generalization of the concept of the
ordinary renewal process given by a sequence of independent identically non-negative
random variables 6,,n = 1. The random variables 8,, can be interpreted as lifetimes.

Definition 2.5 The stochastic matrix Q(t) = [Qq(t);fi,j € S],t >0 is said to be a
renewal kernel if and only if the following conditions are satisfied:
1. The functions Q.;(t) are nondecreasing functions in t.

2. YjesQi; = G, () are distribution functions in t.
3. [Qij(+00) = Py,i,7 € S] = P is a stochastic matrix.

Lemma 2.2 Assume that {X(t) : t >0} is a semi-Markov process with renewal kernel
Q(t) = Q;(t),i,j €S,t € [0,) (2.6)
Then
P{§o =i0,99 =08 =i1,91 <51, ., 5 =i, <5} = bi, [Tk=1 Qik_lik(sk) (2.7)
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A main objective of this paper is to use a three state semi-Markov process to describe a
reliability system which consists of operating unit, identical spare unit, a switch and repair
facility. Also, use the maximum likelihood procedure to obtain the estimators of the
unknown parameters included in this reliability system.

3. SEMI-MARKOYV PROCESS AND STANDBY MODEL

The semi-Markov process is used to model a reliability system consists of one active
unit, an identical spare, a switch and repair facility. This section is devoted to introduce
the assumptions of the studying reliability model. Also the semi-Markov kernel of the
stochastic process that describe this reliability model will be introduced. Further, the
densities corresponding to this kernel will be obtained.

The model of this paper is a slight modification of well a known reliability model
introduced by Barlow and Proschan (1965). In order to describe a reliability model of a
standby system with a repair facility, the considered reliability system consists of one
active unit, an identical spare, a switch and a repair facility and the following assumptions
are adopted:

1. As the operating unit fails, the spare is put in motion by the switch immediately.

2. The failed units can be repaired by the repair facility and the repair fully restore the
units. This means that the repaired element can be considered as new one.

3. The system fails when the active unit fails and repair has not been finished yet or when
the active unit fails and the switch fails .

4. The lifetimes of the active units can be represented by independent and identical
nonnegative random variables &; with probability density function f;(t),t > 0.

5. The lengths of repair periods of the units can be represented by independent and
identical non-negative random variable &, with the distribution function f,(t) =
P{¢, < t}.

6. The event E denotes the switch-over as the active unit fails. Then the probability that
the switch performs when required is represented by P(E) = 6.

7. The whole system can also be repaired, and the failed system is replaced by a new
identical one.

8. The replacing time is represented by a non-negative random variable & with distribution
function f3(t) = P{&; < t}.

9. Finally, we assume that all the random variables described above are independent.

The reliability model of this paper can be described by a semi-Markov process with
three states. Under the model assumptions, the states of the prescribed system can be
considered as follows: The system will be in one of the following three states:

state description

0 System failure

1 Failed unit is repaired and the standby unit is operating

2 Both active and standby units are “Up”
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The following random variables and assumptions will be considered for the model:

Random Variable description
& Lifetime of the active unit
& Length of the repair period
& Replacing time
E The event that Switch-Over

The random variables §;, (i = 1, 2, 3) assumed to be mutually independent and non-
negative. Also F;(.), (i =1, 2, 3) are the distribution function of the i-th random variable
respectively. These distribution functions are considered to be absolutely continuous and
having the probability density functions f;(.), (i =1, 2, 3) respectively.

Let 15,13, Ty, . . . denote the instants which the state of the system changes, where
To =0and let {Y (f) : t = 0} be a stochastic process with state space S = {0, 1, 2}. This
process keeps constant values on the half intervals [t;, T,,,1) and is continuous from the
right. Therefore, it is not a semi-Markov process.
Let us define a new stochastic process as follows:

Assuming that Ty =0 and 7, n=1, 2, ... represent the instants when the components
of the system failed or the whole system renewal. The stochastic process {X(¢) : ¢t = 0}
defined by

X(0) = 0,X(t) = Y(Tn)fOT t € [Tn' Tn+1) (3.1
is a semi-Markov process and its kernel is given by the following matrix
0 0 Qo
[Qlo Qu O ] (3.2)
Qo Q21 O

It is well-known that, the semi-Markov process {X(¢), ¢ = 0} is completely specified by
its semi-Markov kernel. Let us deduce the elements of the semi-Markov kernel which
describe the underlying reliability model as follows:
Qo2(t) = P{X(Ty41) = 2,9541 < t|X(T,) = 0}
= P{&; < t} = F3(0),
Q10(t) =P{X(Tys1) = 0,054 < t|X(T,) = 1}
=P <t,&E > G+ PLEE <68, <)

t t
- f [1— Fy(O1dF,(8) + (1 - 8,) f Fy(0)dF, (x) =
0 0
t
— Fy(0) — 6, j Fo () dF, ()
0

(3.3)

Q11(t) =P{X(Typ41) = 1,941 < tIX(T,) = 1}
¢

—PEE <& > &) =0, fo Fy (O dF, ()

t
= P(E,E < 46 < &) = 0 fo Fo () dF, (x)
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Q21(6) =P{X(Tyy1) = 1,941 < tIX(Ty) = 2}
=P{E,§ <t} = 0oF,(0)

Q20(t) =P{X(Tpy1) = 0,0541 < t|Y(T) = 2}
=P{E,§; <t} = (1 —8)F(t)

To derive the densities associated to the semi-Markov kernel, we will use the
following relations
ay(t10) = 22U v, j e s ter+. (3.4)
That is
%2(“@) = f3(t),t =0,
‘ho(t@) = f1(t) — 8oF, () f1 (), t =0,
011 (t18) = 8F (D) f1(8),t = 0, (3.5)
Q20(t|9) =1 -00)f1(0),t =0,
‘hl(t@) = 0of1(t),t = 0.
Now, we assume that the lifetime of the active units have identically quadratic failure
rate distribution with the parameters 0;, 0, and 05. Therefore the probability density
function of the lifetime of the active units is given by

£ = (B, + Byt + 0562)e (0243027 450a°) g g S 09,5 — [6.85,6>0 (3.6)
Substituting from equations (3.6) into (3.5) we get
g q g
1 1
q10(t18) = (1 — 6F,(1))(61 + 6,5t + 93tz)e_(61t+592t2+563t3),
1 1
%1(“@) = 6yF,(t)(6, + 05t + Qstz)e_(91t+592t2+593t3)
1 1
G20(t18) = (1= Bo)(0 + 0, + 0¢7)e™ (AT30274305)

1 1
q21(t18) = 60(6; + 6t + 93tz)e_(91t+592t2+§93f3), J

. (3.7)

where 0,0,,6; >0, 6, > —/0,,05,t,=0.

Next, we derive the maximum likelihood estimators of the unknown parameters
0y,04,0, and 03 included in the underlying reliability model. The maximum likelihood
procedure will be used to derive these estimators.

4. MAXIMUM LIKELIHOOD ESTIMATORS
In this section, we use the maximum likelihood procedure to derive point and interval
estimates of the unknown vector parameters © = (0,,0;,0,,05) included in the
quadratic failure rate reliability model.

4.1 Maximum likelihood procedure

In this subsection, we use maximum likelihood procedure to derive the point and
interval estimates of the parameters. Suppose that z denotes the observations
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{(ip,t0), (i1,t1), oo, (i, ty)} of two dimensional random vector of variables,
{(€0,90), (€1,91), ..., (€4, 9,)} where 4g,44q,...,t, and tg,ty,..,t, € [0,00) Further,
we assume that this observation is classified as follows:
Let
Aij = {k ik—l = i,ik =j,k: 1,2, ...,n} (41)
be the set of numbers of direct observed transition from the state i to the state j and n;; is
the cardinal number of the set A;; which represents the number of direct transitions from
the state i to state j . In the present case we find that
Ngy + Nyg + Ny + Ny + 1y =7 (4.2)
Based on the above observation, the sample likelihood function L(z;®) can be obtained
as follows:
Using (3.6) and (3.7) the sample likelihood function L(z;©) takes the form
L(z 0) = [Ticay, 902(ti1©) Mica,o 910 (:10) [ica,, 911 (£:1©) [ica,o d20(t:1©) [Tica,, 921 (t:10)
(4.3)
Substituting the semi-Markov densities from (3.7) into (4.3) we get

1 1
L(z8) = CO™ ™ (1 = )20 W (80) Tiep (6 + Ot + Ot Yo~ (Prtets?ati i)
4.4
where
W(0o) = Iliea, [1 —0oF,(tD]  C= [liea,, f3(t) } @5)
B=A1gUA{{1UA,WUAy, m= nyy+nq+ny0+ 1y '
Finally, the log of the sample likelihood function L can be written in the following
form

L= (4’1«11 + 4’121)11]90 + nzoln(l - 90) + an(eo) + }
(4.6)

Tica (81 + 0t; + 85t%) — Ticp (01t; +3 6,7 + 20,15

The maximum likelihood estimators 8, 8;,08, and 05 are the values of 6,,0,,0,

and 03, respectively that maximize the sample likelihood L(Z; Q) Equivalently
09,604,060, and 0; maximize the log sample likelihood function L(Z; Q) since it is a

monotone function of L(z ; Q)

The maximum likelihood equations are given by :
oL oL oL oL
36, = 035. = 035, = 0,55~ =0 4.7)
Using (4.6) and (4.7) the maximum likelihood equations are
OL _ ngp4np;  Dyg + 1 9W(bo) _ 0
0, 0 1-0,  W(@®,) 80, '
oL 1
% = ZieBm —Qiesti =0,

oL ti 1 2

—_— = . _ ). tf = O’

20, ZIEB 90+92ti+93t12 2 ZIEB i

oL t? 1 3

05 ZlEB 90+62ti+93t12 3 ZIEB i ’ ( )

The maximum likelihood estimators 8, 8;,8, and 8 for the unknown parameters
00,64,0, and 65 are the solution of the non-linear system (4.8). As it seems, the general
solution of this system is very difficult to find in a closed form. The general solution is
intractable and numerical procedures are required (Dacay and Krumbein, 1970;



8 Estimation of parameters including a quadratic failure rate semi-Markov reliability model

Krumbein and Graybill, 1965; EI-Gohary and Sarhan, 2004).
Next, we discuss some important special cases of both the time lengths of the repair
periods of the units and the lifetimes of the active units.

4.2 Numerical simulation study

In this subsection, we will discuss illustrative numerical example for the maximum
likelihood estimators of the unknown parameters 6y, 04,0, and 03 included in the semi-
Markov reliability model. The following table displays the mean square errors (MSE) of
the parameters against the different values of the sample size n.

n | MSE(;) MSE(,) MSE(®:;) | n | MSE®,) MSE(®,) MSE(0,)
40 | 232 1.40 3.34 360 0.35 0.21 0.31
80 1.16 0.71 1.24 400 0.31 0.20 0.30
1200 0.72 0.66 0.88 440 0.30 0.19 0.29
160 | 0.65 0.54 0.85 500 0.24 0.14 0.25
200 | 0.49 0.37 0.79 540 0.23 0.13 0.23
250 | 0.42 0.34 0.48 600 0.21 0.12 0.22
300 |  0.41 0.33 0.45 700 0.17 0.11 0.21

where the assumed values of the parameters are 6, = 0.5, 68; = 2.0, 6, = 2.5 and the
partial of the sample size are such that ny;= n,; = ny9 = nyo. Further the distribution
of the length of the repair time is such that H(t;) = 1,V € A;,. Note that the mean
squareerror of the parameter 0, is zero for all different values of the sample size.

4.3 Important special cases

This subsection is devoted to study some important special cases. Such cases occur
when, both the time lengths of the repair periods of the units and the lifetimes of the active
units are exponentially, linear failure rate and Rayleigh random variables. In order to
obtain the first special case, the following assumptions are needed:

1. The distribution of the time lengths of the repair periods of the units satisfy the

condition: 1 —0yF,(t;) =1 —0, forevery i € Aqp.

2. The lifetimes of the active units can be represented by identically exponential

random variables with parameter 0,. Thatis, 68, = 8; =0

In this case, the maximum likelihood estimators are given by:
8 =%»é1 =%:T=ZieBti (4.9)
The second special case can be obtained by considering the following assumptions:
1. The distribution of the time lengths of the repair periods of the units satisfy the
condition: 1 —0,F,(t;) =1—0, forevery i € Ajp.
2. The lifetimes of the active units can be represented by identically linear failure rate
random variables with two parameters 0; and 0,. Thatis, 63 =0

In this case, the maximum likelihood estimators are given by:
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2m+0

a Ny2+Nis A 2%iept?
90 — 22 12,91 — . i€B i (410)
where the estimator 6, is the solution of the nonlinear equation
ZSE'B ts
2Yier (7 A )-t=0 4.11
Lier 2m—0; Ysept§+202 Tien Xsentits ( )

4.4 Numerical simulation study

This subsection is devoted to study the behavior of the mean square errors of the
maximum likelihood estimators of the unknown parameters 6, 6, and 0, against the
sample size. The following table displays the mean square errors (MSE) of the parameters
against the different values of the sample size 7.

n MSE(,;) MSE(@®,) | n | MSE(0;) MSE(6,)
40 242 1.50 440 0.38 0.18
80 1.17 0.91 480 0.35 0.17
120 0.73 0.86 520 0.34 0.15
160 0.67 0.74 600 0.31 0.13
200 0.51 0.57 680 0.28 0.11
250 0.48 0.45 700 0.27 0.07
300 0.43 0.33 780 0.19 0.05
360 0.41 0.21 860 0.17 0.03
400 0.40 0.20 900 0.12 0.02

where the assumed values of the parameters are 6, = 0.5, 68; = 2.1, 6, = 3.5 and the
partial of the sample size are such that n;; = ny,; = nyy = nyg. Further the distribution
of the length of the repair time is such that H(t;) = 1, VIl € A;,. Note that the mean square
error of the parameter 0, is zero for all different values of the sample size. The numerical
study shows that for sufficiently large sample size the mean square error closes to zero.
The third special case can be obtained by considering the following assumptions:
1. The distribution of the time lengths of the repair periods of the units satisfy the
condition: 1 —0,F,(t;) =1 —0, forevery i € A;p.
2. The lifetimes of the active units can be represented by identically Rayleigh random
variables with one parameter 6,.

In this case, the maximum likelihood estimators are given by:
0, = "2z, §, = (4.12)

ZSEB tg.

In the next section, we will derive the confidence intervals for the unknown
parameters included in the quadratic failure rate semi-Markov reliability model.

5. ASYMPTOTIC CONFIDENCE BOUNDS

Since the maximum likelihood estimators (8,,8,, 85, 83) of the unknown parameters
(0, 64, 05, 03) cannot be derived in closed forms, we cannot get the exact confidence
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bounds of the parameters. In this section we will use some of the most widely used
methods to construct approximately confidence intervals for the unknown parameters. The
idea is to use the large sample approximation. The maximum likelihood estimators of ©
can be treated as being approximately multi-normal with mean © = (6, 64, 6,, 63) and
variance-covariance matrix equal to the inverse of the expected information matrix. That

18,
(80— 80), (8, — 01), (8, — 6,), (85 — 03)) - N4 (0,171(8) ) , (5.1)
where I‘l(@) is the variance-covariance matrix of the unknown parameters vector ©.

The element [;; (@), i,j=0,1,2 3,of the 4 x 4 matrix I™! is given by
15 (@) = —Loye;

_5 (5.2)

From expression (4.8), the second partial derivatives of the log-likelihood function
are found to be

9°L gy +ny N0 NG 1 92W(8,)
262 62 (1-6p)2 W2(68,)\ a6, W6, 062
W ®y) _ () BPW®y) _ ( W) _

8600, ' 06008, 86005

2L 1 92L Z t;
EY Yl 27 = - 2
001 £t (6, + 0,t; + O5t2) 06,00, £t (6, + O,t; + 05t2)

(5.3)
0°L t? 0L Z t?
= - 2’ 2= = 2
06,163 £ (6, + 0,t; + 05t7?) 00, £ (6, + 0,t; + 05t?)
0°L t} 0L t}
= - 27 2= = 2
00,063 & (6, + O,t; + 05t?) 003 & (6, + O,t; + 05t?)

Therefore, the approximate 100(1 — a)% two sided confidence intervals for (6, 04, 0, 03)
are respectively, given by

80 £ Zay2 /Ia&(éo). 8, £ Zyys /I;f(él),éz + Zo /2 /1;21(62),63 + Zo/2 /1531(63)

(5.4)
Here Z/, is the upper a/2th percentile of the standard normal distribution.
From above results, we can deduce the following special cases:
Exponential case: setting 68; = 0, = 0, from (5.2) and (5.3), we get the approximate
100(1 — )% two sided confidence intervals for 6, and 6; respectively
90 00(1-80)Zy 2 0+ 91\/Zﬁ/2 (5.5)
\/("11"'7122)(1 90) +(ny0+n20)05 "
Linear failure rate case: setting 0; = 0, from (5.2) and (5.3), we get the approximate
100(1 — a)% two sided confidence intervals for 6, and 0; respectively.
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. 6,(1 -6
B + of - 0) Zasan
\/(nn + nzz)(l - 90) + (nyo + ny0) 02
1
L P
_ (6, + 8,t,)"
91 T 2 Z(x/Z:
ZieB ~ tiA 2 ZieB ~ ti 2 _ZieB ~ 1A ZZiE'B ~ tiA 2
] (0 + 8,t,) (6 + 0,t) (0, + ,t) (8, + 0,t5)" ]
(5.6)
1 v
YieB———=
- 0, +0,t,) Z
o ZieB ~ 1A 2ZieB ~ tizA 2 _ZieB ~ tiA ZZiEB ~ ti 2 v
| (8, + 0,t) (6, + 6,t;) (8, + 0,t) (8 + 0,¢t,)"

Next, we discuss in details the reliability of our semi-Markov model that consists of
one active unit, an identical spare, a switch, and a repair facility.

6. FIRST PASSAGE AND SYSTEM RELIABILITY

In this section, we will discuss the system reliability of the semi-Markov reliability
model. The reliability function of the system will be derived. The distribution of the first
passage time will be obtained.

6.1 The distribution of the first passage

Now, we will define the first passage time. In order to define the first passage time,
we should find an accurate answer for the question “how many transitions will the process
take to reach state j for the first time if the system is in state i at time zero”. The first
passage time of the continuous-time semi-Markov process can be measured in time or in
terms of the number of transitions. We will obtain the distribution ®;,(t) of the first
passage time from the state i to a state in a subset A C S given that state i was entered at
time zero and zeroth transition.

Assuming that 4 ¢ S = {0, 1, 2} and A = S — 4, we introduce the following
notations

Ap= inf{n € N: X(t,) € A}, 6.1)
and
_fia(m) = P{Ap=n[X(0) =i}, Ta = 1pa, (6.2)
Therefore, the function ®;,(t) is given by
®;, (1) = P{Ty, <=t|X(0) = i},i € A, (6.3)

which represents the distribution of the first passage time of the semi-Markov process
{X(¢) : t = 0}, from the state i € A to state in the subset A.
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6.2 The system reliability function

Now, we will define, the mean and the second moment of the first passage time
distribution as follows
Bip = [ tdda (1), and DF = [ 7 t2dDia (D), (6.4)
If A denotes the subset of the failed states of the model and i € A is an initial operating
state such that P{X(0) =i} = 1, then the random variable T, represents the lifetime or the
time to failure of our system. That is, the reliability of the system is
R(t) =1—-d;a(1), t=0, (6.5)
Using [3, 7, 9], some of the reliability characteristics of the system can be defined as
follows:
G = [ tqu(Ddt, and g = [ t2qu(Ddt, (6.6)
To derive the reliability of the system, we will establish the following theorem.

Theorem 4.1 If the following conditions

1.fa=1Vi€A, (6.7)
2. Vi, jeES3Id>0s.t.q5 <d (6.8)
3. Yr_ Ky <o Vi€EA, (6.9)

are satisfied.
Then the functions ®;,(t), the mean ®;, and the second moments ®Z,i € Aare
only the solution of the following system:

t . -
L. ®js (1) = Xjea Qj (t)j' Yex J, Prat — WdQi () ,i € A, (6.10)
2. (DiZA =gi + Xkea pik(bik_:i €A, _ (6.11)
3.0ip = 87 + 2 Yiea GixPra + Zrea PiPii i €A, (6.12)

which consist of a system of integral equations (6.9) and two linear algebraic systems of
equations (6.10) and (6.11).

The system of integral equations (6.9) is equivalent to its Laplace-Stieltjes system
9,4(8) = XijeaGij(s) + Liea Aik(S)Py,(s) 1 EA (6.13)

where

Bia(s) = [ et dDia (D), G (s) = [ e 5t dQy (D), (6.14)
In the underling system, we find that 4 = {0} and A = {1, 2}. From the solution of the
system (6.4), we have

P10(s) = d10() ,P20(s) = a0(s) + EILITE (6.15)
1-q11(8) 1-q11(s)

Using the Laplace transformation, the system reliability function (6.12) of the underling
reliability model is given by

R(s) = —2, (6.16)
From the system of equations (6.10), we can get
d20 =82 + f%f; (6.17)

For the present model we have:
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o - 1 1
81 =82 =E(&) = [, t(61 +0,t+03t%)e (elt+292t2+3e3t3)dt

_ I(:o e—(91t+%92t2+§63t3)dt (6.18)
For the exponential distribution the lifetimes of the active units , we find that:
- 1
g1 =8 =E@) = 9,’P21 = 8o (6.19)

Substituting from (6.18) into (6.16) we obtain a simple form of the mean lifetime of the
underling reliability system

= = = i —60
E(TAlX(0) = 2) = ¢y o + ) (6.20)
where
P11 = 000y f, Fp(we O1Wdu, (6.21)

After observation of a piece of the considered semi-Markov process realization, we can
substitute 8, = 0, and 6; = 6;.

7. CONCLUSION

In this paper we have used the stochastic analysis to discuss an important semi-
Markov reliability model. Also the likelihood procedure is employed to obtain estimators
of the parameters include in this semi-Markov reliability model. The distribution of the
first passage time of this reliability model is obtained. The reliability function of this
model is derived. Important special cases are discussed.
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