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Abstract. This paper discusses the stochastic analysis and the statistical inference of 
a quadratic failure rate semi-Markov reliability model. Maximum likelihood 
procedure will be used to obtain the estimators of the parameters included in this 
reliability model. Based on the assumption that the lifetime and repair time of the 
system units are random variables with quadratic failure rate, the reliability function 
of this system is obtained. Also, the distribution of the first passage time of this 
system is derived. Many important special cases are discussed. 
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1. INTRODUCTION 
 
The development of stochastic models in any applied setting has great importance 

since they have many applications in different fields such as reliability systems, social 
security policy analysis, health care services (El-Gohary and Al-Khedhairi, 2010, El-
Gohary, 2005, El-Gohary, 2004, Kastner and Shachtman, 1982).  

The severity of run a discrete semi-Markov risk models and iterative convergence of 
passage time densities in semi-Markov performance models are discussed in Reinhard and 
Snoussi (2002) and Jeremy et al. (2005).  

A Markov chain analysis can be used to describe patterns of deposition and 
conditional probability of occurrence of different rock types through transition probability 
matrices (Dacay and Krumbein, 1970; Krumbein and Graybill, 1965). The stochastic 
analysis of a semi-Markov reliability model is rarely investigated during the last two 
decades. For a more extensive overview of the reliability theory of repairable systems, see 
the well-known books (Korolyuk and Swishchuk, 1994; Barlow and Proschan, 1981). 

To discuss the stochastic analysis of our reliability model, we present some important 
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definitions. A semi Markov process {X(t) : t ≥ 0} is a stochastic process in which changes 
of state occur according to a Markov chain the time interval between two successive 
transitions is a random variable whose distribution depends on the state from which the 
transition takes place as well as the state to which the next transition takes place 
(Korolyuk and Swishchuk, 1994). Generally a semi-Markov process with discrete state 
space can be defined as a Markov renewal process (El-Gohary, 2005).  

In this paper, in section 2, we will display some important definitions and properties 
of a semi-Markov process and its kernel. In section 3 we use the stochastic analysis and 
semi-Markov model to estimate the parameters included in some reliability models. The 
maximum likelihood method is used to derive the point and confidence interval estimates 
of these parameters. Further, some properties of this reliability model are discussed. 

 
 

2. BASIC DEFINITIONS AND SEMI-MARKOV KERNEL 
 
In this section we shall throw some light upon the definitions and properties of semi-

Markov processes. The semi-Markov kernel and its properties will be discussed. A semi-
Markov process is a stochastic process, {X(t) : t ≥ 0}, where an embedded Markov chain 
governs the state-to-state transitions of the process while a separate probabilistic 
mechanism determines the time spent in each state. It is assumed that the transition 
probabilities depend on the current state and the time spent in each state depends upon the 
current and next state. 

 
Definition 2.1 Assume that the set of nonnegative integers, S = {0, 1, 2, ...}, represents the 
states of a stochastic process and let the transitions of the process occur at time instants 
 0,  , , . . .  . Suppose that denote the transition occurring at time 
instant . Then the twice , , n = 0, 1, 2, . . . is said to constitute a Markov renewal 
process if 

 P{Xn+1 = k, tn+1 − tn _ t|X0 = i0,X1 = i1, . . . ,Xn = in; t0, t1, . . . , tn} = 
P{Xn+1 = k, tn+1 − tn _ t|Xn = in},                           (2.1) 

 
Definition 2.2 The Markov renewal process {Xn, tn}, n = 0, 1, 2, . . . is said to 
homogeneous if 

P{Xn+1 = k, tn+1 − tn _ t|Xn = i} = Qik(t)                   (2.2) 
does not depend on n 

 
Lemma 2.1 Assume that {Xn, n = 0, 1, 2, …} constitutes a Markov chain with state space 
S = {0, 1, 2, …},and transition probability matrix P = {pij}. The continuous parameter 
process Y (t) with state space S = {0, 1, 2, …}, defined by 

Y (t) = Xn, tn _ t < tn+1                            (2.3) 
is called semi-Markov process. 

 
The semi-Markov process is a stochastic process which changes its state according to 

a Markov chain and the time interval between two successive transitions is a random 
variable, whose distribution may be depend not only on the present state but also on the 
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state of the next transition. 
 

Definition 2.3 A two-dimensional Markov process ξ , , N  with values in 
S 0, ∞  is called a Markov renewal process if and only if 

1.  ξ , t |ξ , , , ξ ,   
     ξ , t |ξ    
2.  ξ , 0    
 

In the Markov renewal process, the non-negative random variables  ,  1 , define the 
interval between Markov renewal times: 

  ∑ ,  1, 0  
 

Now, let 
ν   ∑ ,                          (2.4) 

where 

,   1     0,
0      

                      (2.5) 

The process ν  is called a counting process. It determines the number of renewal times 
on the segment [0, t]. 

 
Definition 2.4 A stochastic process {X(t) : t  0} where X(t) = ξ  is called a semi-
Markov process that generated by the Markov renewal process with initial distribution 
P p ξ i  and the kernel Q t , t 0. 

 
Since the counting process ν  keeps constant values on the half-interval 

,  and is continuous from the right, then the semi-Markov process keeps also 
constant values on the half intervals τ , τ :  ξ  for  t  τ , τ . 
Moreover the sequence X  N  is a Markov chain with transition probability 
matrix P  p  Q ∞ , , , S  that is called an embedded Markov chain. The 
concept of a Markov renewal process is a natural generalization of the concept of the 
ordinary renewal process given by a sequence of independent identically non-negative 
random variables ,  1. The random variables  can be interpreted as lifetimes. 

 
Definition 2.5 The stochastic matrix  = ; ,  ,  0 is said to be a 
renewal kernel if and only if the following conditions are satisfied: 

1. The functions Q t  are nondecreasing functions in t. 
2. ∑ Q  G tS  are distribution functions in t. 
3. Q ∞  P , ,  S P is a stochastic matrix. 
 

Lemma 2.2 Assume that  X t t 0  is a semi-Markov process with renewal kernel 
Q   , , S, t 0, ∞                        (2.6) 

Then 
P , 0, , , … , ξ ,   ∏   (2.7) 
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A main objective of this paper is to use a three state semi-Markov process to describe a 
reliability system which consists of operating unit, identical spare unit, a switch and repair 
facility. Also, use the maximum likelihood procedure to obtain the estimators of the 
unknown parameters included in this reliability system. 

 
 

3. SEMI-MARKOV PROCESS AND STANDBY MODEL 
 
The semi-Markov process is used to model a reliability system consists of one active 

unit, an identical spare, a switch and repair facility. This section is devoted to introduce 
the assumptions of the studying reliability model. Also the semi-Markov kernel of the 
stochastic process that describe this reliability model will be introduced. Further, the 
densities corresponding to this kernel will be obtained. 

The model of this paper is a slight modification of well a known reliability model 
introduced by Barlow and Proschan (1965). In order to describe a reliability model of a 
standby system with a repair facility, the considered reliability system consists of one 
active unit, an identical spare, a switch and a repair facility and the following assumptions 
are adopted: 

 
1. As the operating unit fails, the spare is put in motion by the switch immediately. 
2. The failed units can be repaired by the repair facility and the repair fully restore the 

units. This means that the repaired element can be considered as new one. 
3. The system fails when the active unit fails and repair has not been finished yet or when 

the active unit fails and the switch fails . 
4. The lifetimes of the active units can be represented by independent and identical 

nonnegative random variables ξ  with probability density function f t , t 0. 
5. The lengths of repair periods of the units can be represented by independent and 

identical non-negative random variable ξ  with the distribution function 
. 

6. The event E denotes the switch-over as the active unit fails. Then the probability that 
the switch performs when required is represented by  . 

7. The whole system can also be repaired, and the failed system is replaced by a new 
identical one. 

8. The replacing time is represented by a non-negative random variable k with distribution 
function . 

9. Finally, we assume that all the random variables described above are independent.  
 
The reliability model of this paper can be described by a semi-Markov process with 

three states. Under the model assumptions, the states of the prescribed system can be 
considered as follows: The system will be in one of the following three states:  

state description 
0 System failure 
1 Failed unit is repaired and the standby unit is operating 
2 Both active and standby units are “Up” 
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The following random variables and assumptions will be considered for the model:  
Random Variable description 

 Lifetime of the active unit 
 Length of the repair period 
 Replacing time 

E The event that Switch-Over 
 
The random variables ξ , (i = 1, 2, 3) assumed to be mutually independent and non-
negative. Also F . , (i = 1, 2, 3) are the distribution function of the i-th random variable 
respectively. These distribution functions are considered to be absolutely continuous and 
having the probability density functions f . , (i = 1, 2, 3) respectively. 

Let τ , τ , τ , . . . denote the instants which the state of the system changes, where 
τ  = 0 and let {Y (t) : t  0} be a stochastic process with state space S = {0, 1, 2}. This 
process keeps constant values on the half intervals ,  and is continuous from the 
right. Therefore, it is not a semi-Markov process. 
Let us define a new stochastic process as follows: 

Assuming that τ  = 0 and , n=1, 2, ... represent the instants when the components 
of the system failed or the whole system renewal. The stochastic process {X(t) : t  0} 
defined by 

X 0 0, X Y    ,                    (3.1) 
is a semi-Markov process and its kernel is given by the following matrix 

0 0
0
0

                           (3.2) 

It is well-known that, the semi-Markov process {X(t), t  0} is completely specified by 
its semi-Markov kernel. Let us deduce the elements of the semi-Markov kernel which 
describe the underlying reliability model as follows: 
                               P 2, | 0

         P ξ t ,        

   P 0, | 1
                        P ξ t, , t, ξ ξ  

                                           
 1  1 θ

 θ                                               
                                          

 
 

(3.3) 
                     P 1, | 1

                                          P , ξ t, θ

                                           P , ξ t, θ
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                             P 1, | 2
               P E, ξ t θ  

                             P 0, | 2
                           P , ξ t 1 θ         

 
To derive the densities associated to the semi-Markov kernel, we will use the 

following relations 
|Θ  

|
, , S, t R .               (3.4) 

That is 
|Θ , 0, 

|Θ  θ , 0, 
|Θ θ , 0,                    (3.5) 
|Θ 1 θ , 0, 

 |Θ θ , 0. 
Now, we assume that the lifetime of the active units have identically quadratic failure 

rate distribution with the parameters θ , θ  and θ . Therefore the probability density 
function of the lifetime of the active units is given by 

 θ θ θ , θ ,θ 0, θ θ θ , 0   (3.6) 
Substituting from equations (3.6) into (3.5) we get 

|Θ 1 θ ,

|Θ               

|Θ 1 ,          

|Θ ,                      

        (3.7) 

 
where θ ,θ , θ  > 0, θ  > θ , θ  , t , 0. 

Next, we derive the maximum likelihood estimators of the unknown parameters 
θ , θ , θ  and θ  included in the underlying reliability model. The maximum likelihood 
procedure will be used to derive these estimators. 

 
 

4. MAXIMUM LIKELIHOOD ESTIMATORS 
 
In this section, we use the maximum likelihood procedure to derive point and interval 

estimates of the unknown vector parameters Θ  θ , θ , θ , θ  included in the 
quadratic failure rate reliability model. 

 
4.1 Maximum likelihood procedure 

 
In this subsection, we use maximum likelihood procedure to derive the point and 

interval estimates of the parameters. Suppose that z denotes the observations 
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, t , , t , … , , t  of two dimensional random vector of variables, 
ξ , , ξ , , … , ξ ,  where , , … , t  and t , t , … , t   0, ∞  Further, 

we assume that this observation is classified as follows: 
Let 

k: i i, i j, k 1,2, … , n                      (4.1) 
be the set of numbers of direct observed transition from the state i to the state j and n  is 
the cardinal number of the set A  which represents the number of direct transitions from 
the state i to state j . In the present case we find that 

                        (4.2) 
Based on the above observation, the sample likelihood function L ; Θ  can be obtained 
as follows: 

Using (3.6) and (3.7) the sample likelihood function L ; Θ  takes the form 
L ; Θ ∏ |Θ ∏ |Θ ∏ |Θ ∏ |Θ ∏ |Θ   

(4.3) 
Substituting the semi-Markov densities from (3.7) into (4.3) we get 

L ; Θ Cθ 1 ∏     
(4.4) 

where 
W θ  ∏ 1 θ F t         C  ∏ t                     AA

A A A A ,             (4.5) 

Finally, the log of the sample likelihood function L can be written in the following 
form 

 lnθ ln 1 θ lnW θ
∑ θ θ t θ t ∑ θ t θ t θ t                (4.6) 

The maximum likelihood estimators θ , θ , θ  and θ  are the values of θ , θ , θ  
and θ , respectively that maximize the sample likelihood L ; Θ . Equivalently 
θ , θ , θ  and θ  maximize the log sample likelihood function ;Θ  since it is a 
monotone function of L ; Θ . 

The maximum likelihood equations are given by : 
0, 0, 0, 0                          (4.7) 

Using (4.6) and (4.7) the maximum likelihood equations are 

θ
  

θ θ W θ
W θ
θ

0,  

θ
  ∑

θ θ θ
∑ t 0,  

θ
  ∑ ∑ t 0,  

θ
  ∑ ∑ t 0,                (4.8) 

The maximum likelihood estimators θ , θ , θ  and θ  for the unknown parameters 
θ , θ , θ  and θ  are the solution of the non-linear system (4.8). As it seems, the general 
solution of this system is very difficult to find in a closed form. The general solution is 
intractable and numerical procedures are required (Dacay and Krumbein, 1970; 



 
 
 
 
8           Estimation of parameters including a quadratic failure rate semi-Markov reliability model 

Krumbein and Graybill, 1965; El-Gohary and Sarhan, 2004). 
Next, we discuss some important special cases of both the time lengths of the repair 

periods of the units and the lifetimes of the active units. 
 

4.2 Numerical simulation study 
 
In this subsection, we will discuss illustrative numerical example for the maximum 

likelihood estimators of the unknown parameters θ , θ , θ  and θ  included in the semi-
Markov reliability model. The following table displays the mean square errors (MSE) of 
the parameters against the different values of the sample size n. 

n MSE θ  MSE θ  MSE θ n MSE θ  MSE θ  MSE θ  
40 2.32 1.40 3.34 360 0.35 0.21 0.31 
80 1.16 0.71 1.24 400 0.31 0.20 0.30 

120 0.72 0.66 0.88 440 0.30 0.19 0.29 
160 0.65 0.54 0.85 500 0.24 0.14 0.25 
200 0.49 0.37 0.79 540 0.23 0.13 0.23 
250 0.42 0.34 0.48 600 0.21 0.12 0.22 
300 0.41 0.33 0.45 700 0.17 0.11 0.21 

where the assumed values of the parameters are θ  = 0.5, θ  = 2.0, θ  = 2.5 and the 
partial of the sample size are such that =  =  = . Further the distribution 
of the length of the repair time is such that 1, A . Note that the mean 
squareerror of the parameter θ  is zero for all different values of the sample size. 

 
4.3 Important special cases 

 
This subsection is devoted to study some important special cases. Such cases occur 

when, both the time lengths of the repair periods of the units and the lifetimes of the active 
units are exponentially, linear failure rate and Rayleigh random variables. In order to 
obtain the first special case, the following assumptions are needed: 

1. The distribution of the time lengths of the repair periods of the units satisfy the 
condition: 1 θ F 1 θ  for every A . 

2. The lifetimes of the active units can be represented by identically exponential 
random variables with parameter θ . That is, θ  = θ  = 0 

 
In this case, the maximum likelihood estimators are given by: 

θ , θ , τ ∑ t                     (4.9) 
The second special case can be obtained by considering the following assumptions: 

1. The distribution of the time lengths of the repair periods of the units satisfy the 
condition: 1 θ F 1 θ  for every A . 

2. The lifetimes of the active units can be represented by identically linear failure rate 
random variables with two parameters θ  and θ . That is, θ  = 0 

 
In this case, the maximum likelihood estimators are given by: 
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θ , θ ∑                    (4.10) 

where the estimator θ  is the solution of the nonlinear equation 
2 ∑ ∑

∑ ∑ ∑ τ 0            (4.11) 
 

4.4 Numerical simulation study 
 
This subsection is devoted to study the behavior of the mean square errors of the 

maximum likelihood estimators of the unknown parameters θ , θ  and θ  against the 
sample size. The following table displays the mean square errors (MSE) of the parameters 
against the different values of the sample size n. 

n MSE θ  MSE θ n MSE θ MSE θ  
40 2.42 1.50 440 0.38 0.18 
80 1.17 0.91 480 0.35 0.17 

120 0.73 0.86 520 0.34 0.15 
160 0.67 0.74 600 0.31 0.13 
200 0.51 0.57 680 0.28 0.11 
250 0.48 0.45 700 0.27 0.07 
300 0.43 0.33 780 0.19 0.05 
360 0.41 0.21 860 0.17 0.03 
400 0.40 0.20 900 0.12 0.02 

where the assumed values of the parameters are θ  = 0.5, θ  = 2.1, θ  = 3.5 and the 
partial of the sample size are such that  =  =  = . Further the distribution 
of the length of the repair time is such that H 1, A . Note that the mean square 
error of the parameter θ  is zero for all different values of the sample size. The numerical 
study shows that for sufficiently large sample size the mean square error closes to zero. 
The third special case can be obtained by considering the following assumptions: 

1. The distribution of the time lengths of the repair periods of the units satisfy the 
condition: 1 θ F 1 θ  for every A . 

2. The lifetimes of the active units can be represented by identically Rayleigh random 
variables with one parameter θ . 

 
In this case, the maximum likelihood estimators are given by: 

θ , θ ∑ .                      (4.12) 
 
In the next section, we will derive the confidence intervals for the unknown 

parameters included in the quadratic failure rate semi-Markov reliability model. 
 
 

5. ASYMPTOTIC CONFIDENCE BOUNDS 
 
Since the maximum likelihood estimators (θ ,θ , θ , θ ) of the unknown parameters 

(θ , θ , θ , θ ) cannot be derived in closed forms, we cannot get the exact confidence 



 
 
 
 
10           Estimation of parameters including a quadratic failure rate semi-Markov reliability model 

bounds of the parameters. In this section we will use some of the most widely used 
methods to construct approximately confidence intervals for the unknown parameters. The 
idea is to use the large sample approximation. The maximum likelihood estimators of Θ 
can be treated as being approximately multi-normal with mean Θ = (θ , θ , θ , θ ) and 
variance-covariance matrix equal to the inverse of the expected information matrix. That 
is, 

θ θ , θ θ , θ θ , θ θ N 0, I Θ  ,      (5.1) 
where I Θ  is the variance-covariance matrix of the unknown parameters vector Θ. 
The element I Θ , i, j = 0, 1, 2, 3, of the 4 × 4 matrix I  is given by 

I Θ  Θ Θ                       (5.2) 

 
From expression (4.8), the second partial derivatives of the log-likelihood function 

are found to be 

 
1

1 1
 , 

     0, 0, 0  

 
1

,   

(5.3) 

 ,   

 ,   

 
Therefore, the approximate 100(1 − α)% two sided confidence intervals for (θ , θ , θ , θ ) 
are respectively, given by 

θ Z ⁄ I θ , θ Z ⁄ I θ , θ Z ⁄ I θ , θ Z ⁄ I θ  

(5.4) 
Here Z ⁄  is the upper α/2th percentile of the standard normal distribution. 

From above results, we can deduce the following special cases: 
Exponential case: setting θ  = θ  = 0, from (5.2) and (5.3), we get the approximate 
100(1 − α)% two sided confidence intervals for θ  and θ  respectively 

⁄ ,   ⁄

√
           (5.5) 

Linear failure rate case: setting θ  = 0, from (5.2) and (5.3), we get the approximate 
100(1 − α)% two sided confidence intervals for θ  and θ  respectively. 
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1

1
⁄ , 

∑

∑ ∑ ∑ 1 ∑
⁄ , 

(5.6) 

∑ 1

∑ 1 ∑ ∑ ∑
⁄ , 

 
Next, we discuss in details the reliability of our semi-Markov model that consists of 

one active unit, an identical spare, a switch, and a repair facility. 
 
 

6. FIRST PASSAGE AND SYSTEM RELIABILITY 
 
In this section, we will discuss the system reliability of the semi-Markov reliability 

model. The reliability function of the system will be derived. The distribution of the first 
passage time will be obtained. 

 
6.1 The distribution of the first passage 

 
Now, we will define the first passage time. In order to define the first passage time, 

we should find an accurate answer for the question ”how many transitions will the process 
take to reach state j for the first time if the system is in state i at time zero”. The first 
passage time of the continuous-time semi-Markov process can be measured in time or in 
terms of the number of transitions. We will obtain the distribution Φ A  of the first 
passage time from the state i to a state in a subset A  S given that state i was entered at 
time zero and zeroth transition. 

Assuming that A  S = {0, 1, 2} and A = S − A, we introduce the following 
notations 

∆A inf n N: X τ A ,                     (6.1) 
and 

f A n P ∆A n|X 0 i , TA τ∆A,                (6.2) 
Therefore, the function Φ A  is given by 

Φ A t P TA t|X 0 i , i A,                 (6.3) 
which represents the distribution of the first passage time of the semi-Markov process 
{X(t) : t  0}, from the state i  A to state in the subset A. 
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6.2 The system reliability function 
 
Now, we will define, the mean and the second moment of the first passage time 

distribution as follows 
Φ A tdΦ A t , and Φ A t dΦ A t ,              (6.4) 

If A denotes the subset of the failed states of the model and i  A is an initial operating 
state such that P{X(0) = i} = 1, then the random variable  represents the lifetime or the 
time to failure of our system. That is, the reliability of the system is 

R t 1 Φ A t , t 0,                     (6.5) 
Using [3, 7, 9], some of the reliability characteristics of the system can be defined as 
follows: 

q tq t dt, and q t q t dt,             (6.6) 
To derive the reliability of the system, we will establish the following theorem. 

 
Theorem 4.1 If the following conditions 

1. f A 1  i A,                           (6.7) 
 2.  i, j S  d 0 . . q                      (6.8) 

3. ∑ k f A
∞ ∞  i A,                       (6.9) 

are satisfied. 
Then the functions Φ A t , the mean Φ A and the second moments Φ A,   A are 

only the solution of the following system: 
1. Φ A t ∑ Q tA ∑ Φ A t u dQ uA , i A,              (6.10) 
2. Φ A g ∑ pA , i A,                                    (6.11) 
3. Φ A g 2 ∑ q AA ∑ pA , i A,                     (6.12) 

which consist of a system of integral equations (6.9) and two linear algebraic systems of 
equations (6.10) and (6.11). 
 

The system of integral equations (6.9) is equivalent to its Laplace-Stieltjes system 
φ A s ∑ q sA ∑ q s φ A sA , i A,            (6.13) 

 
where 

φ A s e dΦ A t∞ , q s e dQ t∞ ,           (6.14) 
In the underling system, we find that A = {0} and A = {1, 2}. From the solution of the 
system (6.4), we have 

φ s , φ s q s             (6.15) 
Using the Laplace transformation, the system reliability function (6.12) of the underling 
reliability model is given by 

R s φ ,                        (6.16) 
From the system of equations (6.10), we can get 

g ,                      (6.17) 
For the present model we have: 
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g g E ξ t θ θ t θ t e dt  

e θ θ θ dt∞                      (6.18) 
For the exponential distribution the lifetimes of the active units , we find that: 

g g E ξ , p θ                    (6.19) 
Substituting from (6.18) into (6.16) we obtain a simple form of the mean lifetime of the 
underling reliability system 

E TA|X 0 2 φ                 (6.20) 
where 

p θ θ F u e du.                  (6.21) 
After observation of a piece of the considered semi-Markov process realization, we can 
substitute θ θ  and θ θ . 

 
 

7. CONCLUSION 
 
In this paper we have used the stochastic analysis to discuss an important semi-

Markov reliability model. Also the likelihood procedure is employed to obtain estimators 
of the parameters include in this semi-Markov reliability model. The distribution of the 
first passage time of this reliability model is obtained. The reliability function of this 
model is derived. Important special cases are discussed. 
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