• Title/Summary/Keyword: estimation errors

Search Result 1,453, Processing Time 0.023 seconds

Identification of Parameter Errors in Electric Power Systems by WLAV State Estimation (WLAV 상태추정에 의한 전력계통 파라미터 에러 추정에 관한 연구)

  • Kim, Hong-Rae;Gwon, Hyeong-Seok;Kim, Dong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.9
    • /
    • pp.451-458
    • /
    • 2000
  • This paper addresses the issues of the parameter error detection and identification in electric power systems. In this paper, the parameter error identification and estimation is carried out as part of the state estimation. A two stage estimation procedure is used to detect and identify the parameter errors. The suspected parameters are identified by the WLAV state estimator as the first stage. A new WLAV state estimator adding the suspected system parameters in the state vector is used to estimate the exact value of parameter errors. Supporting examples are given by using IEEE 14 bus system.

  • PDF

Damage Detection for Bridges Considering Modeling Errors (모델링 오차를 고려한 교량의 손상추정)

  • 윤정방;이종재;이종원;정희영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.300-307
    • /
    • 2002
  • Damage estimation methods are classified into two groups according to the dependence on the FE model : signal-based and model-based methods. Signal-based damage estimation methods are generally appropriate for detection of damage location, whereas not effective for estimation of damage severities. Model-based damage estimation methods are difficult to apply directly to the structures with a large number of the probable damaged members. It is difficult to obtain the exact model representing the real bridge behavior due to the modeling errors. The modeling errors even may exceed the modal sensitivity on damage. In this study, Model-based damage detection method which can effectively consider the modeling errors is suggested. Two numerical example analyses on a simple beam and a multi-girder bridge are presented to demonstrate the effectiveness of the presented method.

  • PDF

Real-Time Identification and Estimation of Transformer Tap Ratios Containing Errors

  • Kim, Hongrae;Kwon, Hyung-Seok
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.3
    • /
    • pp.109-113
    • /
    • 2002
  • This paper addresses the issue of parameter error identification and estimation in electric power systems. Parameter error identification and estimation is carried out as a part of the state estimation. A two stage estimation procedure is used to detect and identify parameter errors. Suspected parameters are identified by the WLAV state estimator in the first stage. A new WLAV state estimator adding suspected system parameters in the state vector is used to estimate the exact values of parameters. Supporting examples are given by using the IEEE 14 bus system.

Comparative Analysis of Performance of Established Pitch Estimation Methods in Sustained Vowel of Benign Vocal Fold Lesions (양성후두 질환의 지속모음을 대상으로 한 기존 피치 추정 방법들의 성능 비교 분석)

  • Jang, Seung-Jin;Kim, Hyo-Min;Choi, Seong-Hee;Park, Young-Cheol;Choi, Hong-Shik;Yoon, Young-Ro
    • Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.179-200
    • /
    • 2007
  • In voice pathology, various measurements calculated from pitch values are proposed to show voice quality. However, those measurements frequently seem to be inaccurate and unreliable because they are based on some wrong pitch values determined from pathological voice data. In order to solve the problem, we compared several pitch estimation methods to propose a better one in pathological voices. From the database of 99 pathological voice and 30 normal voice data, errors derived from pitch estimation were analyzed and compared between pathological and normal voice data or among the vowels produced by patients with benign vocal fold lesions. Results showed that gross pitch errors were observed in the cases of pathological voice data. From the types of pathological voices classified by the degree of aperiodicity in the speech signals, we found that pitch errors were closely related to the number of aperiodic segments. Also, the autocorrelation approach was found to be the most robust pitch estimation in the pathological voice data. It is desirable to conduct further research on the more severely pathological voice data in order to reduce pitch estimation errors.

  • PDF

Estimation of the Polynomial Errors-in-variables Model with Decreasing Error Variances

  • Moon, Myung-Sang;R. F. Gunst
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.1
    • /
    • pp.115-134
    • /
    • 1994
  • Polynomial errors-in-variables model with one predictor variable and one response variable is defined and an estimator of model is derived following the Booth's linear model estimation procedure. Since polynomial model is nonlinear function of the unknown regression coefficients and error-free predictors, it is nonlinear model in errors-in-variables model. As a result of applying linear model estimation method to nonlinear model, some additional assumptions are necessary. Hence, an estimator is derived under the assumption that the error variances are decrasing as sample size increases. Asymptotic propoerties of the derived estimator are provided. A simulation study is presented to compare the small sample properties of the derived estimator with those of OLS estimator.

  • PDF

Gait State Classification by HMMS for Pedestrian Inertial Navigation System (보행용 관성 항법 시스템을 위한 HMMS를 통한 걸음 단계 구분)

  • Park, Sang-Kyeong;Suh, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1010-1018
    • /
    • 2009
  • An inertial navigation system for pedestrian position tracking is proposed, where the position is computed using inertial sensors mounted on shoes. Inertial navigation system(INS) errors increase with time due to inertial sensor errors, and therefore it needs to reset errors frequently. During normal walking, there is an almost periodic zero velocity instance when a foot touches the floor. Using this fact, estimation errors are reduced and this method is called the zero velocity updating algorithm. When implementing this zero velocity updating algorithm, it is important to know when is the zero velocity interval. The gait states are modeled as a Markov process and each state is estimated using the hidden Markov model smoother. With this gait estimation, the zero or nearly zero velocity interval is more accurately estimated, which helps to reduce the position estimation error.

Estimation of 2D Position and Flatness Errors for a Planar XY Stage Based on Measured Guideway Profiles

  • Hwang, Joo-Ho;Park, Chun-Hong;Kim, Seung-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.64-69
    • /
    • 2007
  • Aerostatic planar XY stages are frequently used as the main frames of precision positioning systems. The machining and assembly process of the rails and bed of the stage is one of first processes performed when the system is built. When the system is complete, the 2D position, motion, and stage flatness errors are measured in tests. If the stage errors exceed the application requirements, the stage must be remachined and the assembly process must be repeated. This is difficult and time-consuming work. In this paper, a method for estimating the errors of a planar XY stage is proposed that can be applied when the rails and bed of the stage are evaluated. Profile measurements, estimates of the motion error, and 2D position estimation models were considered. A comparison of experimental results and our estimates indicated that the estimated errors were within $1{\mu}m$ of their true values. Thus, the proposed estimation method for 2D position and flatness errors of an aerostatic planar XY stage is expected to be a useful tool during the assembly process of guideways.

Impact of Channel Estimation Errors on SIC Performance of NOMA in 5G Systems (5G 시스템에서 비직교 다중접속의 SIC 성능에 대한 채널 추정 오류의 영향)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.9
    • /
    • pp.22-27
    • /
    • 2020
  • In the fifth generation (5G) networks, the mobile services require much faster connections than in the fourth generation (4G) mobile networks. Recently, as one of the promising 5G technologies, non-orthogonal multiple access (NOMA) has been drawing attention. In NOMA, the users share the frequency and time, so that the more users can be served simultaneously. NOMA has several superiorites over orthogonal multiple access (OMA) of long term evolution (LTE), such as higher system capacity and low transmission latency. In this paper, we investigate impact of channel estimation errors on successive interference cancellation (SIC) performance of NOMA. First, the closed-form expression of the bit-error rate (BER) with channel estimation errors is derived, And then the BER with channel estimation errors is compared to that with the perfect channel estimation. In addition, the signal-to-noise (SNR) loss due to channel estimation errors is analyzed.

Robust Adaptive Observer Design for a Class of Nonlinear Systems via an Optimization Method (최적화 기법에 의한 비선형 시스템에서의 강인한 적응 관측기 설계)

  • Jung Jong-Chul;Huh Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1249-1254
    • /
    • 2006
  • Existing adaptive observers may cause the parameter drifts due to disturbances even if state estimation errors remain small. To avoid the drift phenomena in the presence of bounded disturbances, several robust adaptive observers have been introduced addressing bounds in state and parameter estimates. However, it is not easy for these observers to manipulate the size of the bounds with the selection of the observer gain. In order to reduce estimation errors, this paper introduces the (equation omitted) gain minimization problem in the adaptive observer structure, which minimizes the (equation omitted) gain between disturbances and estimation errors. The stability condition of the adaptive observer is reformulated as a linear matrix inequality, and the observer gain is optimally chosen by solving the convex optimization problem. The estimation performance is demonstrated through a numerical example.

Sensorless IPMSM Control Based on an Extended Nonlinear Observer with Rotational Inertia Adjustment and Equivalent Flux Error Compensation

  • Mao, Yongle;Yang, Jiaqiang;Yin, Dejun;Chen, Yangsheng
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2150-2161
    • /
    • 2016
  • Mechanical and electrical parameter uncertainties cause dynamic and static estimation errors of the rotor speed and position, resulting in performance deterioration of sensorless control systems. This paper applies an extended nonlinear observer to interior permanent magnet synchronous motors (IPMSM) for the simultaneous estimation of the rotor speed and position. Two compensation methods are proposed to improve the observer performance against parameter uncertainties: an on-line rotational inertia adjustment approach that employs the gradient descent algorithm to suppress dynamic estimation errors, and an equivalent flux error compensation approach to eliminate static estimation errors caused by inaccurate electrical parameters. The effectiveness of the proposed control strategy is demonstrated by experimental tests.