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ABSTRACT

Polynomial errors-in-variables model with one predictor variable and
one response variable is defined and an estimator of model is derived fol-
lowing the Booth’s linear model estimation procedure. Since polynomial
model is nonlinear function of the unknown regression coefficients and
error-free predictors, it is nonlinear model in errors-in-variables model.
As a result of applying linear model estimation method to nonlinear
model, some additional assumptions are necessary. Hence, an estimator
is derived under the assumption that the error variances are decreasing
as sample size increases. Asymptotic properties of the derived estima-
tor are provided. A simulation study is presented to compare the small
sample properties of the derived estimator with those of OLS estimator.
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1. INTRODUCTION

In traditional regression setting in which a response variable is modeled by
one or more predictor variables, non-stochastic and error-free predictor vari-
ables are assumed. When predictor variables are subject to error, the usual
least squares parameter estimators (OLS estimators) used with traditional re-
gression models are biased and inconsistent. Major research efforts since the
early 1870’s have been directed towards finding alternative estimators that
have desirable properties.

Polynomial errors-in-variables model is a nonlinear function of the unknown
regression coefficients and the (unknown) error-free predictiors. Generalized
LS estimation, nonlinear errors-in-variables model estimation, and approaches
based on score functions are alternatives that can be used to fit this model. The
focus of this work is on the polynomial functional relationship in which jointly
normally distributed measurement errors with completely known covariance
matrices are assumed throughout. A modified generalized LS estimator of the
polynomial errors-in-variables model is derived under the assumption that the
error variances decrease with increasing sample size. Booth(1973) develops a
pseudo maximum likelihood estimator of the linear errors-in-variables model
under the assumption that the covariance matrices of the error vectors are
unequal but completely known. Although the developments presented in this
work are similar to those given in Booth, the assumptions made are differ-
ent. First, the polynomial model considered in this work is a nonlinear model.
Second, decreasing error variances are assumed. The third difference will be
described in Section 2 after introducing necessary notation.

The polynomial errors-in-variables model and assumptions that are neces-
sary in subsequent sections are given in Section 2. A modified generalized LS
estimator is derived in Section 3 and properties of that estimator are intro-
duced in Section 4. Simulation results comparing the derived estimator and
OLS estimator are presented in Section 5.

2. POLYNOMIAL FUNCTIONAL RELATIONSHIP

Let {an}52, and {b,}32, be sequences of positive real numbers such that
n = apb, forn =1,2,-..,00. Assume the existence of a sequence of experi-
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ments indexed by n, and let b, denote the number of observations in the n-th
experiment. Thus, (Yni, Zni 17 =1,2,---,b,) are observed in the n-th experi-
ment, where

Yni = "/)z' + Upi, Tni = T + Upy;.

The random variables (vy;, u,;) denote errors of measurment obtained in
observing unknown error-free (¢;, ;). To condense the notation, the subscript
n will be suppressed. The k-th order polynomial functional relationship in one
predictor is given by the model (2.1). Note that in this work, bold-face letters
denote vectors or matrices and all vectors are column vectors.

i = fBo+ Bimi + Baml + ..+ Bwk
=m3, :=1,2,---,b,, (2.1)

where = (]-7 LED 7{'?, Ty ﬂ'zk), and ,B = (60’ /Hla /32) Ty ﬁk),' Let z; =
(yi, z:)' ; Le., z; = € + w; with ; = (¢;, ;) denoting the vector of error-free
variates and w; = (v, u;)’ the vector of measurement errors. The vector of
measurement errors w; are assumed to be i.i.d. N(0, ¥, ) with completely
known covariance matrix

s [ Tvs Ouu ] 2.9)

auv auu

For further development, a property of Hermite polynomials in normal
variates is needed. Let H,,(Z) be the m-th Hermite polynomial : Hy(Z) =
1, Hi(Z) = Z, and Hn(Z) = ZHpn_1(Z) — (m — 1)Hp_3(Z). Define P,,(Z) =
oc™H,, (%), where o? is the variance of Z. If Z is normally distributed with
mean x and variance o2, then (Stulajter 1978)

E{Pu(2)} = ™. (2.3)
The following definitions are used frequently in subsequent sections.

Definition 2.1. Define the (k + 1) x 1 polynomial vector p; by

pi=mi+ [ = (1, Pi(2i), Po(zi), -+, Pu(ai) ),
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where f; = (0, Py(z;) — 7, Poz;) — 72, -+, Pi(z;) — xF ).
Define the (k + 2) x 1 vectors ¢;,»;,g; and 6 by
G=nm), ri=(v, i), ;= ¢+ 7= (v, p) and 6 =(1,-4'Y. O
Definition 2.2. Define b, x (k + 2) matrix G by
G'=[g. 9, - @),
and define b, x (k + 1) matrices T, IT, and F by
T'=[pyp, - p,), O'=[m m - m, ]and
F'=[f, f -~ fy, ], respectively,

where g;, p;, m; and f; are given in Definition 2.1. Finally, define b, x 1 vector
y,=(y1’y27"'7ybn)' -

Note that p, denotes a vector of k-th order Hermit polynomials in the
observable predictor z; and f; denotes the vector of deviations from the corre-
sponding powers in the error-free predictor. Also, observe that ¢; is the vector
of error-free response and polynomial predictor variates, g, is the correspond-
ing vector of observable variates, and E(r;) = o by (2.3). From Definition 2.1,

Yi = W:ﬁ+vi =P§ﬂ+ez‘,

where e; = v; — fi8. This is traditional errors-in-variables model in which the
vector of Hermite polynomials p; is a vector of observed predictor variables, r;
is the vector of error-free predictors, and f; is its measurement error vector.
Therefore, »; is the vector of measurement errors for the observable variates
g;- Utilizing the measurement error vector r; and the vectors in Definition 2.1,
model (2.1) can be rewritten in the form

gi=C£+ria C:0=0, Z=132aabn (24)

The symmetric (k +2) x (k+2) covariance matrix of the i-th measurement
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error vector r; is

§2; = Cov(r;)
Ovv 0 Cov(vi, Pi(z;) —m) -+ Cov(vi, Pe(z;) — 7F)
0 0 . 0
= ' .(2.5)
Symmetric Cov{P;(z;) — 7], Pn(z;) — 7}

The elements of the covariance matrix £2; can be computed using the following
expressions.

(i) Cov{P(z;) — 7}, v} = Il Yoy, 1=1,2,--,k,

= mz-}-:nn%nd. 2])' m+n—c_2c
T (201G — o)t T
& : (2m)! (2n)!
h d: = -1 m+n—j / '
where s = O ) o = 012G — O (a7 4 D)

with ¢; = max{0,j —n} and ¢, = min{j, m}.
(111) E{sz_l(x,‘)Pgn_l(iC,‘)}

m+n—1 m+n 2 N 1 '
— Z Z dj — { (.7 ')}m+n_ - o.z;!-n-—c—l,)r?c’
ponr (2e)(j—c—1)12 c

_ t2 m4n—j (2m _ 1)‘ (2Tl - 1)'
where d; = 3 (1) @2t -1 m-t){2(j —t) =1} (n —j +1)!

t=1t1
with t; = max{1l,j — n} and {; = min{j — 1,m}.

(iv) E{Pam-1(2:) Pan(z:)}

m+nm+n (2] — 1)' m+n—c7r_2C—1

- 2_: Z dj(2c— G- c)!2m+"“°a’“‘ v




120 ESTIMATION OF THE POLYNOMIAL ERRORS-IN-VARIABLES MODEL

Ny (2m — 1)! (2n)!
M = ) e - R0 ~ O =TT )

with ¢, = max{1,j —n} and ¢, = min{j, m}.

Since §2;’s contain powers of the =;, they are unequal and unknown al-
though X w is known, which comprises the third different assumption from
that of Booth. The construction of 8 is based on the assumption that a;* =
o(n~1/3) and there is a preliminary estimator of 8, say 8, satisfying 6 — 0 =
O,{max(a;, n=Y/2)}. For general nonlinear models Wolter & Fuller (1982b)
proved that ,BOLS B = Op{max(a;', n7'/?)} when a;' = o(n~'/3), where
,BOLS is OLS estimator of B. 1t is also assumed that an estimator of §2;, say
£2;, is available satisfying £2; = £2; + O (a"3/2). An unbiased estimator of
£2; is obtained by replacing 7! with P;(z;), j = 1,2, ,2(k — 1), by (2.3).
It is shown is Section 4 that an unbiased estimator of .Q satisfies the men-
tioned assumption. In the next section, the derivation of 8 is detailed and it
is demonstrated in Theorem 4.1 that n'/?(3 — B) converges in distribution to
a normal random variable.

3. ESTIMATOR

Suppose that model (2.1) and (2.2) hold. Utilizing T; as the measurement
error vector component of the observable vector g! = (y;, p!), the generalized
LS estimator of B minimizes the weighted sum of squares

b
Z (2) (2)_11',(2) subject to ¢:0 =0, (3.1)

where r,(-z) denotes »; with second element deleted and .Q,(?) denotes §2; with
second row and second column deleted. This notation is used so zero row and
zero column corresponding to the constant term(f,) can be removed, thereby
making .Q( ) nonsmgular

Let g (2) C,u and 8@ denote g:,¢; and @ respectively with second element
deleted as before. Using Lagrangian multipliers, minimizing (3.1) is equivalent
to minimizing
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bn
@ = 3o(6™ AP g gl 2 (g 0 g0 ¢ P ¢

i=1
bn ,
~23 a7 (¢{7'0? + 8) (3.2)

with respect to C,@),O and ¢of. Differentiating (3.2) with respect to C$2) results
in the system of equations

9Q

= 2007 (¢ - gP) - 20;6®), i=1,2,---,b, (3.3
ac?® '

which gives

«_ —Bo— 0(2)194('2)
i= 9(2)’Q$2)g(2)
using {0 = 0. Substituting (3.4) into (3.3) and setting equal to zero yields
8§,

, (3.4)

] —1 1 ’ ’ ’
@ p® — —W{ﬂo(@ -9.,)0+ (09, — Bo)(¢; — 9:)'6}

6'9.9:0

0'2,6°
since the second element of {; — g; is 0 and {;# = 0. Thus, by defining
M; = g,g., the quantity to be minimized is

b b

n @) )~ _(2) _ n @' M 6

E T, ni r; E (35)
1=1 =1 0 n 0

By taking the derivative of (3.5) with respect to 8 and setting the result
equal to zero, the value of 8, say 8°, which minimizes (3.5) subject to '8 =0
satisfies

= 0, (36)

where o; = > 0 and af', = Var(e;) = 6°$2,0° > 0. Since 062‘, and o;

involve 8°, the solution to (3.6) is difficult to obtain. Therefore, an alternative
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estimator of @ for which asymptotic properties can be obtained is needed.

0' M6
62,

0 and £2; satisfying assumptions mentioned in the previous section. If ol., 02,

Define 6 0‘ = 0'9 6 and a; = , where @ and §2; are estimators of

and ¢; in (3.6) are replaced by 62, £2; and &; respectively, then the relatlonshlp

) s s
~(M; — a;82;
2 ( 5T = O (3.7)

can be used to determine 3. Note that § will not in general equal to 8°. For
further developments, define b, x b, diagonal matrix W = diag{o?} and let

W = diag{62}. By Definition 2.2, (3.7) can be expressed as

1 & 01 "
, ———
(bGW 'G b,j_}&? 6:62,)0 = (3.8)

Thus, using partitioned matrices and vectors in (3.8),

1 bn " 1 1 bn A
_(—T’W T——Zﬂﬂm)) (b—TW y—~Za 2yuiy), (3.9)
{ ""'11

which is an explicit representation of the estimator.

4. PROPERTIES OF THE ESTIMATOR

In this section, theorems will be given that describe the asymptotic proper-
ties of 3. Since e; = v; — f:B, we have .Qfe( ) = .va( )—.fo( ),8 and y=T83+

1 &
e, where €' = (ej, ey, -+, ¢€;,). Define H = (—T'W~ T ——Z 52 Off(, )

b " 1=1
Then, from (3.9)

B=H(HB+N)

n A

” 1 N
where N = b—II'W e+ P F W le - b—z .f)fe(,) Hence,
n n =1
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-1 .

B-B=H N. (4.1)

The next theorem uses (4.1) and establishes a relationship which can be used
to prove asymptotic normality of 3.

Theorem 4.1. Let the model (2.1) define a polynomial errors-in- variables
model and assume:

(i) The measurement errors w; are i.i.d. N(o,%,,) with X, completely
known.

(ii) The measurement error vectors »; are independent and E(|r;|*) = La;?,
for some real L < oo and all ¢.

(iii) The elements of {; are bounded by a finite constant.
(9) Jim, o = lim b = oo
(v) The elements of the error covariance matrix satisfy L., = O(a;?).
(vi) The elements of the sequence {a,}%; satisfy a;! = o(n~1/3).
(vii) A preliminary estimator of 8, say 6, exists and satisfies

6-0= O,{max(a;!, n7/?)}.

(viii) An estimator of §2;, say .Q,, is available for 1=1,2,--+,b,, such that f?.-
and £2; are independent for i # j, and £2; = £2, + Op(a'3/2)

(ix) For any column vector, z, in an open set containing the true parameter
6,
0< K; <222z < Ky <ooand 0 < K} < 2'82;z < K}; < c0,i =
1,2,
where K1 (K};) and Ky(K};) are fixed constants.

Then, V(3 ~ B) = Va(;-IT(a, W) 1T} by + 0,(1),
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2
ané€;
- mﬂfe(f))-

n¥e;g

bn
where ¢ = biﬂ'(an - ;I"Z

2
Proof. By the assumptions (ii), (v), (vii), (viii) and the relation ¢/0 = 0,

A

0'(a,M)8 = {0’ +Op{max(a;’, n™")}  an (¢ + 7)(CL + 7))
{6+ Op{max(a;?, n7'/%)}}
= 0'(apr:v})0 + 0,{a? max(a!, n~1/?)},and

anbe, = {0’ + Op{max(a;’, n™/)}}[a, 2; + O,(a;/?)]
{8 + O,{max(a]', n~1/%)}}
= an0l + Oy(a;'?). (4.2)
An application of assumption (i) and (4.2) yields
&; = {0'(anr:7)0+0,{a,/* max(a;", ™)} {(an0? ) +0,(a;V/?)}
_ O{E(rir}) + Oy(a;")}0

2
ol

=1+0,(1). (4.3)

+ Op{a;/? max(az?, n~'/?)}

Now, write the right-hand side of (4.1) as (a;'H)~(a; /N and consider two

terms separately.

PP | - 1 & &
a;'H = ZT,(G"W) 'T - 5:; ana.z — 50
1 1 & &
= 5, T HF) W) I F) == 3 5 = €211+ Oy (a7,
n n =1 "’ €
1, _ _
= 5~ (a, W)™ T + O,(a;'?). (4.4)

The above relation (4.4) holds since we have

(@ W)™ = (6 W)™ + Op(a;/?),
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bln'(anw)'lF = Op(n71/%),

1

b—F’(anW)“II = 0,(n"1?),

1 _, -1 1 1 -1/2 -1/2
and Z—F (an W) 'F = = > = 2456 + Op(n™%a, /7).

n n =1 “Nn-e;

To find a; 1N, consider its individual terms separately. By (4.2) and assump-
tion (ii),

j g— a7\—1 _ 1 &n e _1/2 -1/2
an (anW) e = bn ; ana'2 a, )
1
= b—ﬂ’(anW)‘le + 0,(n"Y2a V%),

—LF'(anW)“le = E fe, —3/2),

bn " =1 ano

1 & s

and - Z . 2400
" i=1 4n0 e,
bn
- iz{{ol (a,7:7])0}(a,02) " +0,{al/* maz(a}?, n~1/?)}}

X {(ana ) + Op(a 1/2)}{nfe(t) + Op(ay 3/2)}

1 & 0'(a,rir))0
__Z{ L

n =1

a,.az 2 nfe(i)} +OP(a;3/2)7

since max(a;3/?, a7/*n~1/?) = a;3/% by assumption (vi). Therefore

s 1 _, 1 &n Gne,? -3/2

a;'N = =T (a,W) e + =3 o (Fiei = = 2yen) + Op(a2™)
bn i=1 In0¢, n-ei

= G5+ 0,(a;*/?). (4.5)

From (4.4) and (4.5), it follows that
B-B = (a;'H) ' (a;'N)
1 _, _ 17 _
(I (@ W) )6, + 0y(a;%)
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(T (@ W) )7y 40,7,

by assumption (vi). By multiplying \/n on both sides of the above equation,
the conclusion of the theorem is obtained. a

It is evident that E'((;bﬂ) and E((f)ﬂd) ) are necessary to know the mean

and variance of the limiting distribution of 3. They are stated here without
proof.

Theorem 4.2. Given the same model and assumptions as in Theorem 4. 1,
r,bﬁ has the following properties.

~

~" o~ bn iE 3 ,
(i) E(bsds) = %H'W-Im 22 G EEr)-S0a )
1= 1 e €;

bn 3

. N R CICTAL B I
=1 €;

1 ”n 2 e?

2 ) f € — é nfe(i))(f:ei - —;2 Ife(i))}' o

Now, using Theorem 4.1 and Theorem 4.2, a result concernmg the asymp-
totic dlstnbutlon of B is presented.

Theorem 4.3. Suppose that the same model and assumptions as in
Theorem 4.1 hold. Then,
1

Vr(B-B) 5 N(o, ,;g;,g[n{%H’(anW)*H}"E@ﬂJ'g){EII’(anW)"‘H}"D-

Proof. Let A be an arbitrary (k + 1)-dimensional real-valued vector, then

VAX{-IT (@ W) T} B - B) = VAN, + op(1)
= \/__ Z Qi + 0,(1

711—
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k+1 A L€ /\jfije; )\j(ane?)

where Q; = Z{ ana2 anUZi (ano? )? fe() }. The subscript j denotes
the j-th element of a vector in the expression for Q;. Let QF = a,Q;. The
random variables Q¥(: = 1,2,---,b,) are independent with zero means and

obviously each term of @7 is a polynomial function of normally distributed
random variables divided by a power of ¢2,. Now, since o2 and =; are bounded
by assumptions (iii) and (ix) of Theorem 4.1, all moments of Q} are bounded.
So for v > 2,

e {Z E(Q?)}”/"’ n—eo {Z,-=1 E(Q; )}”’2
The result of the theorem follows by applying Liapounov CLT, multivariate
CLT and Theorem 4.2 a

=0.

As a last step in this section, it is shown that an unbiased estimator f),- of
§2; defined in Section 2 satisfies assumption (viii).

Lemma 4.1. Under assumptions (i) - (ix) of Theorem 4.1,
2; = 2; + 0,(a]¥?).

Proof. i) For the last k elements of the first row and column of §2;.
From the expression given in Section 2,

Py (2:)0u, = 1 (xf--l + az—sﬂlf 30w + @i 5531 Soh - L%
= l$£—lguv + Op( n )

-1
= Inlow +1> ( . )ufrf’l_’auv + Op(a;?)
s=1

= lﬂ'f—lO'm, + 0,,(&;3/2), l= 1,2,. . ’k_

ii) For the remaining nonzero elements of £2;.
Again from the expression given in Section 2,

(Qi )2m+2,2n+2

127
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m4n—1m4n-1 (2])' |
= d: : mn=c p a,
c=20 g IR = o) gmin—eun  L2e(®:)
TR (2])' m4n—c _ 2¢c -2
= L X gy grmecn el 4 0p(er?)
RIS (25)! pme 2 )
= y m+n—c c - /2
- EO Z & (20)! (j — ¢)! 2mn—c Tuu 7+ 0p(a, ")
e= j=c

= (2:)2m42,2n42 + Op(ar—LSﬂ)-

The proofs for (ﬁ¢)2m+1,2n+1 and (f),-)gm+1,2n+2 are similar.
Therefore, from i) and ii), £2; = §2; + 0,(a;3/?). ]

5. SIMULATION RESULTS

In section 3, an estimator of the unknown 8 of the k-th order polynomial
errors-in-variables model was constructed. Although asymptotic properties of
the derived B were also obtained, the question arises as to how well this esti-
mator performs with small sample sizes. In this section, ,@ is considered from
a numerical point of view using the cubic errors-in-variables model (k = 3)
and is compared with the performance of 3, 5. Before stating the simulation
procedure in detail, it is necessary to mention on the modification of B derived
earlier.

An estimator of the k-th order polynomial model is constructed using OLS
estimator as an initial estimator in Section 3. It is given in (3.9) and rewritten
here for convenience. Specifically,

N 1 &1 1 & & 4,1 & 1 & & .
B = (FZ} &_ZP;PQ - b—z; 52 12156)) (b—;&—f;?iyi - b_; 32 121))-
n o= e; n 4= € n 4= € n 4= €

(5.1)
Unfortunately, §2; introduced in Lemma 4.1 is not always positive semidefi-
nite (Fuller 1987, p.213) and it was found that &% can take negative values in
preliminary work. To eliminate that problem, another estimator of £2;, which
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is positive semidefinite, is defined. Let

0
o,
%= | 2012(Py 4 (P (x) - P1)) |
30L2{P;y + b2 {Py(z;) — P2}}
bn b
where P, =1 E Py (z;), P, =0 Z Py(z;),

@ = (L) = P ({P(e) - Pa) = Sho) and

z—l
b= Z{Pg P2} Z{Pg Pg}z—*b auu 2UuuZP2(x
=1
Define §2; = ¢,/ and 6% = é'q&iqbg@ where @ is OLS estimator of 8. This £2;

is used in the simulation because it is positive semidefinite.

From (4.3), &; is not a consistent estimator of 1 and as a result, it was
found that &; took very unstable values (for example, 10~* ~ 10%) during the
preliminary work. These unstable values of &; result in the extremely unbal-
anced weights for each i. Hence, &; is set equal to 1 for each ¢ in the first term
of (5.1) so that B takes the same form as that of the quadratic model esti-
mator (Wolter & Fuller 1982a). From (4.4), it is evident that the asymptotic
properties of @ remain the same even with this modification. Therefore, A3 is
modified to

- 11, 1&1 ., 1 &1 1 & &
ﬁM=(E§&—2Pm;—E;§9m)) (ngp,y, anAznfv())
(5.2)

Booth(1973) suggests a further modification of the estimator (5.1). To
present his revised estimator, the following definition is necessary.

Definition 5.1. Define (k + 2) x (k + 2) matrices M, and 2" by

. 1 & MJy M;p
Mgg:b ZA2gtgl—[M;y .

n =1 pp
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and
[ L b by .
. b 2570 b s s
= b_n . ’l;.
51;.‘:1 ’%‘:nfv(z) i > 5792453
= ( q:,’.." {)Ef
L 2, 824
n|
Using Definition 5.1, his suggested estimator 8* satisfies
(M, — af2)8* =0, (5.3)
where a is the smallest root of
|M:, —af2’| = 0. (5.4)

Therefore, from Fuller(1987, p.125-126), the modified estimator of 3 given in
(3.9) is

'B* = (M;p - aﬁ}f)_l(M;y - a‘f)fv)’

where « is defined in (5.4). Finally, a small-order modification introduced by
Fuller(1980) results in

Bh) = (M, = (a = )05 (M3, - (o= )L, (59

where A > 0 is a fixed number. In simulation, estimator (5.5) is uesd with
1,4.

h=0,

The cubic measurement error model considered in the simulation study is
defined by o; = 7; — #2, with w; = (v;, ;) ~ N(o,X,,). Simulations are
conducted in which 50 replications of samples of size n = 30 and 100 are gener-
ated from the given cubic model for each parameter set, with bivariate normal
variates generated by IMSL subroutine GGNSM on an IBM 3081D mainframe

computer. For each sample size, the error-free predictors are equally spaced
from -5 to 5. Sample statistics such as the mean, variance and mean squared
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(MSE) are computed and the evaluation of the small sample behavior of the
derived estimator and OLS estimator is made on the basis of these sample
statistics.

The four error covariance matrices used in the simulation are :

I II I v

0.50 0.00 1.50 0.00 0.50 0.25 0.10 0.00
0.00 0.50 0.00 0.50 0.25 0.50 0.00 0.10

Covariance matrix II was included to examine the effect of changing the ratio
A = 04y /0y, from 1 to 3 relative to covariance matrix I. Covariance matrix III
was included in order to assess the performance of the estimators when the
errors are correlated with p = 0.5. Covariance matrix IV decreases the size of
the error variances by a factor of 5 from those for covariance matrix I. For each
parameter set, a, = 1 was used in calculating the value of derived estimator.

Table 1 and Table 2 summarize the results of the simmulation study. Total
squared error (TSE) is the sum of four MSE’s. In order to standardize the
changes in the size of error variances, the ratios of TSE for each estimator
reported rather than the raw TSE values. Of course, all the raw TSE values
increase with the size of the error variances. The ratios of TSE for each estima-
tor are obtained relative to that of OLS estimator and is presented in Table 1 :
i.e., each tabled value is IOO(TSE " /TSEOLS) h =0,1,4. From Table 1, it

is seen that all B~ (h),h =10,1,4, have srnaller TSE than OLS estimator except

B7(0) for parameter set I with n = 30. And, as the sample size is increased
from 30 to 100, TSE of all 37(h) (relative to OLS estimator),h = 0,1,4, have
been reduced and thls reduction is at least 55%. No big difference can be found
between 3 (1) and B” (4) for all parameter sets.

Table 2 and Table 3 contain more detailed information on the estimators.
These tables include the average biases and the sample variances of the es-
timated regression coefficients for the _parameter set III with n = 30,100,
respectively. It is found that bias in ﬁOLS is quite large, especially for the
second element B,, for this parameter set (In fact, for all parameter sets). The
results of ﬁOLS for n = 30 and n = 100 show no big difference. The above
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results agree with the fact that OLS estimator is biased and inconsistent in
errors-in-variables model. It is seen that " (k)’s defined in (5.5) show much
better results than those of OLS estimator in both bias and variance aspects
with no big difference among them.

As a conclusion of simulation study, the derived estimator B*( h) turns out
to be superior to OLS estimator in bias and TSE except one case. (Parameter
set I with n = 30) Although there is no clear preference among B (h (
(1)

)’s
0,1,4) when measurement error variances are relatively small, 8 (1) or 8 (4 )
is considered as good choice, otherwise.
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Table 1. Ratios of TSE !

Parameter Set

I 1 11 I\

Estimator n: 30 100 30 100 30 100 30 100
B7(0) 181 21 47 17 43 20 16 8
B (1) 85 22 45 17 40 20 16 8
B(4) 54 23 43 18 38 21 15 8

Table 2. Estimator Bias and Variance, Parameter Set III, n = 30

Estimator (3, 51 B2 Bz Absolute Sum

(a) Bias
OLS 19 -573 .02 .46 6.40
B(0) .02 -346 .04 -.09 3.61
B(1) .01 -352 .05 -.07 3.65
B (4) -02 -370 .06 .00 3.78
(b) Variance
OLS 973 7.1 .22 .04 17.10
B(0) 131 754 .57 .08 9.50
B°(1) 120 6.05 .53 .06 7.84
B'(4) 1.00 387 .42 .04 5.33

00T SEge , /TSEoLs),h=0,1,4.
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Table 3. Estimator Bias and Variance, Parameter Set III, n = 100

Estimator [, 51 B2 Pz Absolute Sum

(a) Bias
OLS  -04 -641 -.01 .53 6.99
B(0) -02 -262 -.04 -.15 2.83
B'(1)  -02 -267 -.03 -.14 2.86
B(4) -03 -279 -03 -.11 2.96
(b) Variance
OLS 238 183 .05 .01 4.27
B7(0) 44 151 .15 .03 2.13
B'(1) 43 144 .15 .02 2.04
B(4) 40 126 .14 .02 1.82




