• 제목/요약/키워드: estimation errors

검색결과 1,465건 처리시간 0.025초

관개용수로 CCTV 이미지를 이용한 CNN 딥러닝 이미지 모델 적용 (Application of CCTV Image and Semantic Segmentation Model for Water Level Estimation of Irrigation Channel)

  • 김귀훈;김마가;윤푸른;방재홍;명우호;최진용;최규훈
    • 한국농공학회논문집
    • /
    • 제64권3호
    • /
    • pp.63-73
    • /
    • 2022
  • A more accurate understanding of the irrigation water supply is necessary for efficient agricultural water management. Although we measure water levels in an irrigation canal using ultrasonic water level gauges, some errors occur due to malfunctions or the surrounding environment. This study aims to apply CNN (Convolutional Neural Network) Deep-learning-based image classification and segmentation models to the irrigation canal's CCTV (Closed-Circuit Television) images. The CCTV images were acquired from the irrigation canal of the agricultural reservoir in Cheorwon-gun, Gangwon-do. We used the ResNet-50 model for the image classification model and the U-Net model for the image segmentation model. Using the Natural Breaks algorithm, we divided water level data into 2, 4, and 8 groups for image classification models. The classification models of 2, 4, and 8 groups showed the accuracy of 1.000, 0.987, and 0.634, respectively. The image segmentation model showed a Dice score of 0.998 and predicted water levels showed R2 of 0.97 and MAE (Mean Absolute Error) of 0.02 m. The image classification models can be applied to the automatic gate-controller at four divisions of water levels. Also, the image segmentation model results can be applied to the alternative measurement for ultrasonic water gauges. We expect that the results of this study can provide a more scientific and efficient approach for agricultural water management.

Augmented 칼만 필터를 이용한 전자광학 추적 장비의 측정치 시간지연 보상과 초기 자세 결정 (Measurement Time-Delay Compensation and Initial Attitude Determination of Electro-Optical Tracking System Using Augmented Kalman Filter)

  • 손재훈;최우진;김성수;오상헌;이상정;황동환
    • 한국멀티미디어학회논문지
    • /
    • 제24권12호
    • /
    • pp.1589-1597
    • /
    • 2021
  • Due to the low output rate and time delay of vehicle's navigation results, the electro-optical tracking system(EOTS) cannot estimate accurate target positions. If an inertial measurement unit(IMU) is additionally mounted into the EOTS and inertial navigation system(INS) is constructed, the high navigation output rate can be obtained. And the time-delay can be compensated by using the augmented Kalman filter. An accurate initial attitude is required in order to have accurate navigation outputs. In this paper, an attitude determination algorithm is proposed using the augmented Kalman filter in order to compensate measurement delay of the EOTS and have accurate initial attitude. The proposed initial attitude determination algorithm consists of an augmented Kalman filter, an INS, and an integrated Kalman filter. The augmented Kalman filter compensates the time-delay of the vehicle's navigation results and the integrated Kalman filter estimates the navigation error of the INS. In order to evaluate performance of the proposed algorithm, vehicle's navigation outputs and IMU measurements were generated using sensors' model-based measurement generator and initial attitude estimation errors of the proposed algorithm and the conventional algorithm without the augmented Kalman filter were compared for the generated measurements. The evaluation results show that the proposed algorithm has better accuracy.

UAM 환경에서의 3D Point Cloud Data 지면/객체 분리 기법 연구 (A Study on Ground and Object Separation Techniques Utilizing 3D Point Cloud Data in Urban Air Mobility (UAM) Environments)

  • 구본수;최인호;유재림
    • 한국항행학회논문지
    • /
    • 제27권4호
    • /
    • pp.481-487
    • /
    • 2023
  • 최근 UAM(Urban Air Mobility)에 대한 관심이 도시의 교통 혼잡과 대기오염 문제 해결 방안으로 급증하고 있다. 하지만 UAM의 효율적인 운영을 위해서는 3D Point Cloud 데이터의 정확한 처리가 필요하며, 특히 지면과 객체를 분리하는 문제가 중요하다. 본 논문은 UAM 환경의 동적이고 복잡한 특성을 고려하여 지면과 객체를 효과적으로 분리하는 방법을 제안하고 검증한다. 우리의 접근 방식은 MEMS 센서로부터 얻은 자세 정보와 RANSAC을 이용한 지면 평면 추정을 결합하여, GPS 오차에 크게 영향 받지 않는 지면/객체 분리를 가능하게 한다. 시뮬레이션 결과는 이 방법이 UAM 환경에서 효과적으로 작동함을 보여주며, 도심 항공 모빌리티의 안전성과 효율성을 향상시키는 중요한 단계를 제시한다. 향후 연구는 이 알고리즘의 정확성을 높이고 다양한 UAM 환경에서 성능을 평가하며, 실제 드론 테스트를 진행할 예정이다.

Structural system identification by measurement error-minimization observability method using multiple static loading cases

  • Lei, Jun;Lozano-Galant, Jose Antonio;Xu, Dong;Zhang, Feng-Liang;Turmo, Jose
    • Smart Structures and Systems
    • /
    • 제30권4호
    • /
    • pp.339-351
    • /
    • 2022
  • Evaluating the current condition of existing structures is of primary importance for economic and safety reasons. This can be addressed by Structural System Identification (SSI). A reliable static SSI depends on well-designed sensor configuration and loading cases, as well as efficient parameter estimation algorithms. Static SSI by the Measurement Error-Minimizing Observability Method (MEMOM) is a model-based deterministic static SSI method that could estimate structural parameters from static responses. In the current state of the art, this method is only applicable when structures are subjected to one loading case. This might lead to lack of information in some local regions of the structure (such as the null curvatures zones). To address this issue, the SSI by MEMOM using multiple loading cases is proposed in this work. Observability equations obtained from different loading cases are concatenated simultaneously and an optimization procedure is introduced to obtain the estimations by minimizing the discrepancy between the predicted response and the measured one. In addition, a Genetic-Algorithm (GA)-based Optimal Sensor Placement (OSP) method is proposed to tackle the OSP problem under multiple static loading cases for the very first time. In this approach, the Fisher Information Matrix (FIM)'s determinant is used as the metric of the goodness of sensor configurations. The numerical examples of a 3-span continuous bridge and a 13-story frame, are analyzed to validate the applicability of the extended SSI by MEMOM and the GA-based OSP method.

KNOCKOFF를 이용한 성근 VHAR 모형의 FDR 제어 (Controlling the false discovery rate in sparse VHAR models using knockoffs)

  • 박민수;이재원;백창룡
    • 응용통계연구
    • /
    • 제35권6호
    • /
    • pp.685-701
    • /
    • 2022
  • FDR은 1종 오류를 제어하는 매우 보수적인 FWER과 달리 더 자유로운 변수 판단을 제공하여 고차원 자료의 추론에 있어 널리 쓰이고 있다. 본 논문은 Barber와 Candès (2015)가 제안한 knockoff 방법론을 사용하여 FDR을 일정 수준으로 제어하면서 고차원 장기억 시계열 모형인 성근 VHAR 모형을 추정하는 방법을 제안한다. 또한 기존의 방법론인 AL (adaptive Lasso)와의 모의실험을 통한 비교 연구를 통해서 장단점을 비교하였다. 그 결과 AL이 성근 일치성을 보이는 등 전체적으로 좋은 성질을 가지고 있지만, FDR의 관점에서는 비교적 높은 값을 주는 것을 관찰했다. 즉 AL은 0인 계수를 0이 아닌 계수로 추정하려는 경향이 있었다. 반면, knockoff 방법론은 FDR을 일정 수준으로 유지하였지만 표본의 수가 작을 경우 매우 보수적으로 0이 아닌 계수를 찾아냄을 관찰할 수 있었다. 하지만, 모형이 희박할 수록 knockoff의 성능이 크게 향상됨을 확인할 수 있어 표본의 개수가 크고 성근 모형일 경우 knockoff 방법론이 우수함을 살펴볼 수 있었다.

울산지역 퇴적암의 강도 추정법 연구 - 점 하중 강도지수로 일축 압축강도 추정 - (A Review of Strength Estimation Method on Ulsan Sedimentary Rocks)

  • 민덕기;문종규
    • 한국지반공학회논문집
    • /
    • 제22권8호
    • /
    • pp.63-72
    • /
    • 2006
  • 암석의 점하중 강도지수($I_{s}$)로 일축압축강도(${\sigma}_{c}$)를 추정함에 있어, ASTM이나 ISRM에서는 암종이나 지질학적 생성과정에 관계없이 직경방향 점하중 강도($I_{s}//$)의 23배(ASTM) 혹은 $20{\sim}25$배(ISRM)로 취하고 있다. 여기서는 경상분지의 울산에서 채취한 연약한 퇴적암의 시험결과로 ${\sigma}_{c}$$I_{s}$의 관계를 제시한다. ${\sigma}_{c}$$I_{s}$ 시험결과 ${\sigma}_{c}$의 추정값은 선형 회귀분석 보다는 강도비(${\sigma}_{c}/I_{s}$)로 표현하는 것이 추정오차가 적었다. 그리고 약면이 내포된 퇴적암의 강도비는 ${\sigma}_{c}/I_{s}//$보다 ${\sigma}_{c}/I_{s}{\bot}$의 추정오차가 더 작으므로 ${\sigma}_{c}$추정치는 ASTM이나 ISRM에서 제시한 값보다 낮게 취해야 참값에 가까울 수 있다는 결론을 얻었다.

Directional frequency analysis and recording 소노부이의 표적 탐지 성능 향상을 위한 위너필터링 기반 주변 소음 제거 기법 (Wiener filtering-based ambient noise reduction technique for improved acoustic target detection of directional frequency analysis and recording sonobuoy)

  • 홍정표;배인영;석종원
    • 한국음향학회지
    • /
    • 제41권2호
    • /
    • pp.192-198
    • /
    • 2022
  • DIrectional Frequency Analysis and Recording(DIFAR) 소노부이는 대잠전에 효과적인 무기체계로 하나의 무지향성 센서와 두 개의 지향성 센서로 구성된 3채널 빔형성을 통해 표적의 방향을 탐지한다. 하지만, 주변 소음의 영향으로 DIFAR소노부이의 특정방위(0°, 90°, 180°, 270°) 표적 탐지 성능이 저하되는 단점이 있다. 따라서, 본 논문에서는 주변 소음을 추정하고 제거를 통해 DIFAR 소노부이의 표적 탐지 성능을 향상시키는 방법을 제안하였다. 주변 소음 추정을 위해 소나신호처리에서 널리 쓰이는 Order Truncate Average(OTA)기법을, 추정된 소음을 제거하기 위해 음성신호처리에서 널리 쓰이는 위너필터링 기법을 사용하였다. 제안한 방법을 평가하기 위해 표적 방위추정 결과의 평균 제곱 오차를 비교한 결과 신호대잡음비 0 dB이하에서 제안한 방법이 효과적임을 확인할 수 있었다.

반복적 기법을 사용한 그래프 기반 단어 모호성 해소 (Graph-Based Word Sense Disambiguation Using Iterative Approach)

  • 강상우
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제13권2호
    • /
    • pp.102-110
    • /
    • 2017
  • 최근 자연어 처리 분야에서 단어의 모호성을 해소하기 위해서 다양한 기계 학습 방법이 적용되고 있다. 지도 학습에 사용되는 데이터는 정답을 부착하기 위해 많은 비용과 시간이 필요하므로 최근 연구들은 비지도 학습의 성능을 높이기 위한 노력을 지속적으로 시도하고 있다. 단어 모호성 해소(word sense disambiguation)를 위한 비지도 학습연구는 지식 기반(knowledge base)를 이용한 방법들이 주목받고 있다. 이 방법은 학습 데이터 없이 지식 기반의 정보을 이용하여 문장 내에서 모호성을 가지는 단어의 의미를 결정한다. 지식 기반을 이용한 방법에는 그래프 기반방식과 유사도 기반 방법이 대표적이다. 그래프 기반 방법은 모호성을 가지는 단어와 그 단어가 가지는 다양한 의미들의 집합 간의 모든 경로에 대한 의미 그래프를 구축한다는 장점이 있지만 불필요한 의미 경로가 추가되어 오류를 증가시킨다는 단점이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 그래프 구축을 위해 불필요한 간선들을 배제하면서 반복적으로 그래프를 재구축하는 모델을 제안한다. 또한, 구축된 의미 그래프에서 더욱 정확한 의미를 예측하기 위해 하이브리드 유사도 예측 모델을 적용한다. 또한 제안된 모델은 다국어 어휘 의미망 사전인 BabelNet을 사용하기 때문에 특정 언어뿐만 아니라 다양한 언어에도 적용 가능하다.

위성영상과 SEBAL 모형을 이용한 공간증발산량 산정 연구 (Estimation of Spatial Evapotranspiration Using satellite images and SEBAL Model)

  • 하림;신형진;이미선;김성준
    • 대한토목학회논문집
    • /
    • 제30권3B호
    • /
    • pp.233-242
    • /
    • 2010
  • Bastiaanssen(1995)에 의해 개발된 SEBAL(Surface Energy Balance Algorithm for Land) 모형은 25개의 sub model들을 이용하여 지표의 증발산량과 기타 여러 에너지 교환을 계산하는 이미지-프로세싱 모형이다. SEBAL 모형은 Landsat 또는 기타 여러 위성영상을 통해 얻을 수 있는 열적외선 방사, 표시 및 근적외선 측정 자료 등을 사용한다. 본 연구에서는 한강유역의 주 지류인 경안천 유역에 모형을 적용시켰다. 증발산량(ET)은 4개년의(2001년-2004년) Landsat과 MODIS 위성영상을 입력자료로 사용하여, 에너지 균형원리를 통해 pixel-by-pixel을 기준으로 계산되었다. Landsat(30 m)과 MODIS(1 km) 사이의 비교 결과도 평가되었으며, Landsat과 MODIS 결과들은 FAO Penman-Monteith 증발산량과 비교하였다. 위성영상 ET들과 FAO Penman-Monteith ET 간의 절대 오차는 12% 이내로 확인되었으며, 유역 분포 증발산량의 시공간분포특성 또한 분석하였다.

포인트 클라우드 기반 건축물 기울기 측정 자동화 (Point Cloud-based Automated Building Tilt Measurement)

  • 유다영;이채은;심성한
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권5호
    • /
    • pp.84-88
    • /
    • 2023
  • 최근 컴퓨터 비전, LiDAR 등을 활용하여 구조물의 유지관리를 효율화하기 위한 연구가 활발하게 이루어지고 있다. 건축물의 경우, 점검 항목 중 하나인 기울기는 일반적으로 토탈스테이션을 이용하여 계측하는데, 점검자에 따라 계측값이 일정하지 않아 정확한 기울기 값을 얻기 어렵다. 따라서, 본 연구에서는 현행 건축물 기울기 계측 방식의 신뢰도를 개선하고 측정 과정을 효율화하기 위하여 Point Cloud를 활용한 건축물 기울기 측정 자동화 방법론을 제안한다. 제안 방법론의 기울기 추정 알고리즘은 적용 대상을 직육면체 형태의 건물로 제한하며 외벽 평면 추출과 모서리 추정 및 기울기 계산의 두 단계로 이루어져 있다. 해당 알고리즘을 실제 건축물에 적용하여 기울기를 추정하였고, 이를 토탈스테이션을 이용한 계측방법과 비교하였다. 그 결과, 제안 기법은 정확도와 객관성, 그리고 자동화 관점에서 기존의 측정방식을 대체할 만한 수준으로 판단된다.