References
- 김주훈, 김경탁, 박정술(2005) LAI를 고려한 잠재증발산량 추정. 한국지리정보학회지. 한국지리정보학회, 제8권 제4호, pp.1-13.
- 신사철, 안태용(2004) NDVI와 기온자료를 이용한 광역증발산량의 추정. 한국지리정보학회지. 한국지리정보학회, 제7권 제3호, pp. 79-89.
- 신사철, 안태용(2007) 인공위성 자료를 활용한 광역증발산량의 산정방법 개발, 한국지리정보학회지. 한국지리정보학회, 제10권 제2호, pp. 70-80.
- 유진웅(2003) SEBAL 모형을 이용한 증발산량의 추정. 석사학위논문, 서울대학교.
- Anthony, M., Masahiro, T., Richard, G. A., and William, J.K. (2000) Final report; application consumptive use of water and streamflow depletion in the bear river basin of idaho through remote sensing. ldaho Department of Water Resources.
- Bastiaanssen, W.G.M. (1995) Regionalization of Surface flux densities and moisture indicators in composite terrain : A remote sensing approach under clear skies in Mediterranean climates. Wageningen Agricultural University, Wageningen. The Netherlands.
- Bastiaanssen, W.G.M. (1998a) Remote sensing ln water resources management : the state of the art. lnternational Water Management lnstitute, Colombo, Sri Lanka, pp. 118.
- Bastiaanssen, W.G.M. (2000) SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin. Turkey, Journal of Hydrology, vol. 229, pp. 87-100. https://doi.org/10.1016/S0022-1694(99)00202-4
- Bastiaanssen, W.G.M., Menenti, M., Feddes, R. A., and Holtslag, A.A.M. (1998b) A remote sensing sllrface energy balance algorithm for land (SEBAL) : 1. Formulation. Journal of Hydrology, 212-213, pp. 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4
- Bastiaanssen, W.G.M., Pelgrllm, H., Wang, J., Ma, Y., Moreno, J.F., Roerink, G.J., and van der Wal, T. (1998c) A remote sensing surface energy balance algorithm1 for land (SEBAL) : 2. Validation. Journal of Hydrology, 212-213, pp. 213-229. https://doi.org/10.1016/S0022-1694(98)00254-6
- Brakke, T. W. and Kanemasu, E.T. (1981) Insolation estimation from satellite measurements of reflected radiation. Remote Sensing of Environment, Vol. 11, pp. 157-167. https://doi.org/10.1016/0034-4257(81)90015-8
- Gautier, c., Diak, G., and Masse, S. (1980) A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. J. Appl. Meteor., Vol. 19, pp. 1005-1012. https://doi.org/10.1175/1520-0450(1980)019<1005:ASPMTE>2.0.CO;2
- Gurney, R.J. and Hall, D.J. (1983) Satellite-derived surface energy balance estimates in the alaskan sub-arctic. J. Climate and Applied Met. Vol. 22, pp. 115-125. https://doi.org/10.1175/1520-0450(1983)022<0115:SDSEBE>2.0.CO;2
- Heilman, J.L., Kanemasu, E.T., Bagley, J.O., and Rasmussen, V.P. (1977) Evaluating soil moisture and yield of winter wheat in the Great Plains using Landsat data. Remote Sensing of Environment, Vol. 6, No. 4, pp. 315-326. https://doi.org/10.1016/0034-4257(77)90051-7
- Kustas, W. P. (1995) Recent advances associated with large scale field experiments in hydrology. Rev. of Geophys. Suppl, pp. 959-965.
- Kustas, W.P. and Norman, J.M. (1996) Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal, Vol. 41, pp. 495-516. https://doi.org/10.1080/02626669609491522
- MacFarland, M.J., Miller, R.I., and Neale, CM. U. (1990) Land surface temperature derived from SSM/l passive microwave brightness temperatures. IEEE Trans. Geosci. Remote Sens., Vol. 28, pp. 839-845. https://doi.org/10.1109/36.58971
- Moran, M.S., Jackson, R.D., Raymond, L.H., Gay, L.W. and Slater, P.N. ( 1989) Mapping surface energy balance components by combining LANDSAT Thematic Mapper and ground-based mereorological data. Remote Sens. Environ. Vol. 30, pp. 77-87. https://doi.org/10.1016/0034-4257(89)90049-7
- Norman, J.M., and Becker, F. (1995) Termino;ogy in thermal infrared remote sensing of natural surface. Remote Sens. Rev., Vol. 12, pp. 159-173. https://doi.org/10.1080/02757259509532284
- Pinker, R.T., Frovin, R., and Li, Z. (1995) A review of satellite methods to derive surface shortwave irradiance. Remote Sens. Environ. Vol. 51, pp. 108-124. https://doi.org/10.1016/0034-4257(94)00069-Y
- Price, J.T. (1982) The law and management of water resources and supply : A. S. Wisdom and J. L. G. Skeet Shaw and Sons, 275. Advances in Water Resources, Vol. 5, No. 4, pp. 225.
- Reginato, R.J., Jackson, R.D., and Pinter Jr, P.J. (1985) Evapotrans-piration calculated from remote multispectral and ground station meteorological data. Remote Sensing of Environment, Vol. 18, No. 1, pp. 75-89. https://doi.org/10.1016/0034-4257(85)90039-2
- Sellers, P.J., Meeson, B.W., Hall, F.G., Asrar, G, Murphy, R.E., Schiffer, R.A., Bremerton, F.P., Dickinson, R.E., Ellingson, R.G., Field, C.B., Huemmrich, K.F., Justice, C.O., Melack, J.M., Roulet, N.T., Schimel, D.S., and Try, P.D. (1995) Remote sensing of the land surface for studies of global change: Models - algorithms - experiments. Remote Sens. Environ., Vol. 51, pp. 1 -17. https://doi.org/10.1016/0034-4257(95)90011-X
- Soer, G.J.R. (1980) Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperatures. Remote Sens. Environ., Vol. 9, pp. 27-45. https://doi.org/10.1016/0034-4257(80)90045-0
- Sugita, M. and Brutsaett, W. (1991) Daily evaporation over a region from lower boundary layer profiles. Wat. Resour. Res., Vol. 27, pp. 747-752. https://doi.org/10.1029/90WR02706
- Taconet, O., Carlson, T., Bernard, R., and Vidal-Madjar, D. (1986) Evaluation of a surface/vegetation parameterization using satellite measurements of surface temperature. Clim. Appl. Met,. Vol. 25, pp. 1752-1767. https://doi.org/10.1175/1520-0450(1986)025<1752:EOASPU>2.0.CO;2