Acknowledgement
이 논문은 한국연구재단의 지원을 받아 수행된 기초연구 사업임 (NRF-2022R1F1A1066209).
References
- Baek C and Park M (2021). Sparse vector heterogeneous autoregressive modeling for realized volatility, Journal of the Korean Statistical Society, 50, 495-510. https://doi.org/10.1007/s42952-020-00090-5
- Barber RF and Candes EJ (2015). Controlling the false discovery rate via knockoffs, The Annals of Statistics, 43, 2055-2085. https://doi.org/10.1214/15-AOS1337
- Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing, Journal of the Royal Statistical Society: Series B (Methodological), 57, 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
- Breaux HJ (1967). On stepwise multiple linear regression, Army Ballistic Research Lab Aberdeen Proving Ground, Maryland.
- Candes E, Fan Y, Janson L, and Lv J (2018). Panning for gold: 'Model-X' knockoffs for high-dimensional controlled variable selection, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80, 551-577. https://doi.org/10.2307/2341042
- Corsi F (2009). A simple approximate long-memory model of realized volatility, Journal of Financial Econometrics, 7, 174-196. https://doi.org/10.1093/jjfinec/nbp001
- Desboulets LDD (2018). A review on variable selection in regression analysis, Econometrics, 6, 45.
- Fan J and Li R (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Hochberg Y (1988). A sharper Bonferroni procedure for multiple tests of significance, Biometrika, 75, 800-802. https://doi.org/10.1093/biomet/75.4.800
- Patterson E and Sesia M (2020). Knockoff: The Knockoff Filter for Controlled Variable Selection, R package version 0.3.3.
- Simes RJ (1986). An improved Bonferroni procedure for multiple tests of significance, Biometrika, 73, 751-754. https://doi.org/10.1093/biomet/73.3.751
- Tibshirani R (1996). Regression shrinkage and selection via the Lasso, Journal of the Royal Statistical Society: Series B (Methodological), 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
- Zhang CH (2010). Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, 38, 894-942. https://doi.org/10.1214/09-AOS729
- Zhang CH and Huang J (2008). The sparsity and bias of the Lasso selection in high-dimensional linear regression, The Annals of Statistics, 36, 1567-1594. https://doi.org/10.1214/07-AOS520
- Zhao P and Yu B (2006). On model selection consistency of Lasso, The Journal of Machine Learning Research, 7, 2541-2563.
- Zou H (2006). The adaptive Lasso and its oracle properties, Journal of the American Statistical Association, 101, 1418-1429. https://doi.org/10.1198/016214506000000735